Next Article in Journal
Total Antioxidant Capacity from Dietary Supplement Decreases the Likelihood of Having Metabolic Syndrome in Korean Adults
Next Article in Special Issue
Post-Exercise Muscle Protein Synthesis in Rats after Ingestion of Acidified Bovine Milk Compared with Skim Milk
Previous Article in Journal
Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice
Previous Article in Special Issue
Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessReview
Nutrients 2017, 9(10), 1047; doi:10.3390/nu9101047

Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review

Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Faculté de Médecine la Timone, 27 Boulevard Jean Moulin, 13385 Marseille, France
*
Author to whom correspondence should be addressed.
Received: 22 August 2017 / Revised: 12 September 2017 / Accepted: 19 September 2017 / Published: 21 September 2017
(This article belongs to the Special Issue Protein for Post-Exercise Recovery and Performance)
View Full-Text   |   Download PDF [448 KB, uploaded 21 September 2017]   |  

Abstract

Amino acids and more precisely, branched-chain amino acids (BCAAs), are usually consumed as nutritional supplements by many athletes and people involved in regular and moderate physical activities regardless of their practice level. BCAAs have been initially shown to increase muscle mass and have also been implicated in the limitation of structural and metabolic alterations associated with exercise damage. This systematic review provides a comprehensive analysis of the literature regarding the beneficial effects of BCAAs supplementation within the context of exercise-induced muscle damage or muscle injury. The potential benefit of a BCAAs supplementation was also analyzed according to the supplementation strategy—amount of BCAAs, frequency and duration of the supplementation—and the extent of muscle damage. The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42017073006) and followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Literature search was performed from the date of commencement until August 2017 using four online databases (Medline, Cochrane library, Web of science and ScienceDirect). Original research articles: (i) written in English; (ii) describing experiments performed in Humans who received at least one oral BCAAs supplementation composed of leucine, isoleucine and valine mixture only as a nutritional strategy and (iii) reporting a follow-up of at least one day after exercise-induced muscle damage, were included in the systematic review analysis. Quality assessment was undertaken independently using the Quality Criteria Checklist for Primary Research. Changes in indirect markers of muscle damage were considered as primary outcome measures. Secondary outcome measures were the extent of change in indirect markers of muscle damage. In total, 11 studies were included in the analysis. A high heterogeneity was found regarding the different outcomes of these studies. The risk of bias was moderate considering the quality ratings were positive for six and neutral for three. Although a small number of studies were included, BCAAs supplementation can be efficacious on outcomes of exercise-induced muscle damage, as long as the extent of muscle damage was low-to-moderate, the supplementation strategy combined a high daily BCAAs intake (>200 mg kg−1 day−1) for a long period of time (>10 days); it was especially effective if taken prior to the damaging exercise. View Full-Text
Keywords: branched-chain amino acids (BCAAs); exercise-induced muscle damage; skeletal muscle; nutritional strategy branched-chain amino acids (BCAAs); exercise-induced muscle damage; skeletal muscle; nutritional strategy
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Fouré, A.; Bendahan, D. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients 2017, 9, 1047.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top