Selenium and Chronic Diseases: A Nutritional Genomics Perspective
Abstract
:1. Introduction
2. Selenoprotein Functions and Genetic Variants
2.1. Genetic Variations in Genes Involved in Se Homeostasis
| Protein | Gene Symbol | Chromosome Location | Protein Function | Localization/Expression |
|---|---|---|---|---|
| Se Metabolism and Homeostasis | ||||
| Selenoprotein P | SEPP1 | 5q31 | Plasma transporter of Sec; anti-oxidant in endothelium | Extracellular (plasma)/Liver, brain, other tissues |
| Selenophosphate synthetase 1 | SEPHS1 | 10p14 | synthesis selenophosphate from selenide and ATP | Nucleus/ubiquitous |
| Sec tRNA synthase | SEPSECS | 4p15.2 | conversion of O-phosphosery l-tRNA(Sec) to selenocysteiny l-tRNA(Sec) | Ubiquitous |
| Redox Active Selenoproteins | ||||
| Cellular glutathione peroxidase | GPX1 | 3p21.3 | major antioxidant enzyme, detoxification of hydrogen peroxide | Cytosol/ubiquitous |
| Glutathione Peroxidase 3 | GPX3 | 5q23 | detoxification of hydrogen, redox signalling | Extracellular (plasma)/kidney, other tissues |
| Phospholipid Hydroperoxide Glutathione Peroxidase | GPX4 | 19p13.3 | reduces phospholipid hydroperoxides, sperm maturation, redox signalling | Cytosol, membrane , mitochondria/ubiquitous, brain, testis |
| Thioredoxin Reductase1 | TXNRD1 | 12q23.3 | reduction oxidized thioredoxin and other substrates, intracellular redox control | Cytosol/ubiquitous |
| Thioredoxin Reductase 2 | TXNRD2 | 22q11.21 | reduction oxidized thioredoxin, mitochondrial redox control | Mitochondria/Liver, kidney, other tissues |
| Selenoprotein Genes Involved in ER Signalling and Degradation of Misfolded Proteins | ||||
| 15KDa-selenoprotein | SEP15 | 1p31 | formation of disulfide bonds, quality control of protein folding in the endoplasmic reticulum | Endoplasmic reticulum/ubiquitous |
| Selenoprotein S | SELS | 15q26.3 | removal of misfolded proteins from the endoplasmic reticulum lumen (ERAD pathway) | Endoplasmic reticulum/ubiquitous |
2.2. Genetic Variations in Redox Active Selenoproteins
2.3 Genetic Variations in Selenoprotein Genes Involved in ER Signalling and Degradation of Misfolded Proteins
3. Genetic Variants in Selenoprotein Genes and Breast Cancer
| Gene Symbol | SNP | Base Change | Cases/Controls | Target/Location | Functionality | Population | Association | Reference |
|---|---|---|---|---|---|---|---|---|
| GPX1 | rs1050450 | C > T | 1038/1088 | Pro198Leu | Enzymatic activity Pro > Leu | USA | none | [42] |
| 1229/1629 | USA | none | [43] | |||||
| 79/517 | USA | T allele: ↑ BC risk | [19] | |||||
| 399/372 | Canada | none | [34] | |||||
| 2293/2278 | UK | none | [44] | |||||
| 4371/0 | UK | No association with BC survival risk | [40] | |||||
| 377/377 | Denmark | T allele: ↑ BC risk | [20] | |||||
| 933/959 | Denmark | T allele: ↑ non-ductal BC; interaction with rs3877899(SEPP1); ↓ eGPx activity | [35] | |||||
| GPX4 | rs713041 | C > T | 2182/2264 | 3'UTR, near SECIS | Sec-insertion efficiency C > T | UK | none | [44] |
| 4356 | UK | T allele: ↑ risk of mortality by BC | [40] | |||||
| 939/960 | Denmark | T allele: ↓ eGPx activity | [35] | |||||
| SEPP1 | rs3877899 | G > A | 937/957 | Ala234Thr | Plasma SePP isoforms, Se bioavailability | Denmark | AA: ↓ BC and ductal BC risk | [35] |
| SEPP1 | rs7579 | G > A | 937/957 | 3'UTR | Plasma SePP isoforms, Se bioavailability | Denmark | none | [35] |
4. Genetic Variants in Selenoprotein Genes and Prostate Cancer
| Gene Symbol | SNP | Base Change | Cases/Controls | Target/Location | Functionality | Population | Association | Reference |
|---|---|---|---|---|---|---|---|---|
| GPX1 | rs1050450 | C > T | 745/0 | Pro198Leu | Enzymatic activity Pro > Leu | USA | none | [62] |
| 500/1391 | USA | none | [63] | |||||
| 247/487 | Germany | T allele: ↓ PCA risk with ↑ serum Se levels | [60] | |||||
| 82/123 | Macedonia | T allele: ↓ PCA risk | [64] | |||||
| 262/435 | New Zealand | T allele: ↑PCA risk | [65] | |||||
| GPX1 | rs1800668 | C > T | 951/25408 | tagSNP/promoter | tagSNP/high LD with rs1050450 | Netherlands | TT: ↓advanced (stage III/IV) PCA risk | [52] |
| GPX1 | rs17650792 | A > G | 952/25426 | tagSNP/promoter | unknown | Netherlands | GG: ↑advanced (stage III/IV) PCA risk | [52] |
| GPX4 | rs713041 | C > T | 739/0 | 3'UTR, near SECIS | Sec-insertion efficiency C > T | USA | none | [62] |
| 245/490 | Germany | none | [60] | |||||
| 260/439 | New Zealand | none | [65] | |||||
| SEPP1 | rs3877899 | G > A | 2643/1570 | Ala234Thr | Plasma SePP isoforms, Se bioavailability | Sweden | none | [61] |
| 248/492 | Germany | none | [60] | |||||
| 951/25409 | Netherlands | genotype interacts with Se status to ↓advanced PCA risk | [52] | |||||
| 259/436 | New Zealand | none | [65] | |||||
| SEPP1 | rs7579 | G > A | 248/492 | 3'UTR | Plasma SePP isoforms, Se bioavailability | Germany | AA :↑ PCA risk; interaction with plasma [SePP] | [60] |
| 951/25408 | Netherlands | A allele: ↓advanced (stage IV) PCA risk; genotype interacts with Se status to ↓advanced PCA risks | [52] | |||||
| SEPP1 | rs13168440 | T > C | tagSNP | unknown | USA | C allele: interacts with Plasma Se to ↓PCA risk | [66] | |
| SEP15 | rs5859 | G > A | 1195/1186 | 3'UTR | Sec-insertion efficiency | USA | none | [67] |
| 248/492 | Germany | AA :↓ GPX3 activity | [60] | |||||
| SEP15 | rs5845 | G > A or C > T | 259/436 | 3'UTR | Sec-insertion efficiency | New Zealand | AA ↑ PCA risk | [65] |
| SEP15 | rs561104 | G > A | 1195/1186 | tagSNP | unknown | USA | AA: ↑risk of mortality by PCA | [67] |
| SELK | rs9880056 | T > C | 248/492 | tagSNP | unknown | Germany | C allele: interacts with serum SePP and serum Se to ↓ risk advanced and high grade PCA | [68] |
| TXNRD1 | rs7310505 | C > A | 248/492 | tagSNP | unknown | Germany | CC: interacts with serum SePP and serum Se activity to ↑ risk of advanced PCA | [68] |
| TXNRD2 | rs9605030 | C > T | 248/492 | TagSNP | unknown | Germany | T allele: interact with serum Se concentration to ↑ high grade PCA risk | [68] |
| TXNRD2 | rs9605031 | C > T | 248/492 | TagSNP | unknown | Germany | T allele: interact with serum Se concentration to ↓ high grade PCA risk | [68] |
5. Genetic Variants in Selenoprotein Genes and Colorectal Cancer
| Gene Symbol | SNP | Base Change | Cases/Controls | Target/Location | Functionality | Population | Association | Reference |
|---|---|---|---|---|---|---|---|---|
| GPX1 | rs1050450 | C > T | 656/743 | Pro198Leu | Enzymatic activity Pro > Leu | USA | no association with advanced distal colorectal adenoma | [76] |
| 981/397 | Norway | none | [81] | |||||
| 375/779 | Denmark | none | [82] | |||||
| 832/705 | Czech Republic | no association alone, but genetic interaction with rs37413471 (SELS) | [78] | |||||
| 827/733 | Korea | none | [79] | |||||
| GPX4 | rs713041 | C > T | 745/758 | 3′UTR, near SECIS | Sec-insertion efficiency C > T | USA | no association with advanced distal colorectal adenoma | [76] |
| 252/187 | UK | TT:↓ CRC risk | [77] | |||||
| 832/705 | Czech Republic | CT: ↑ CRC risk; interaction with rs4880 (SOD2), rs9605031 (TXNRD2) and rs3877899 (SEPP1) | [78] | |||||
| 827/733 | Korea | none | [79] | |||||
| SEPP1 | rs3877899 | G > A | 193/127 | Ala234Thr | Plasma SePP isoforms, Se bioavailability | Germany | none | [83] |
| 832/705 | Czech Republic | No association alone, but interaction with rs5859(SEP15) and with rs713041 (GPX4) | [78] | |||||
| 827/733 | Korea | none | [79] | |||||
| SEPP1 | rs7579 | G > A | 832/705 | 3′UTR | Plasma SePP isoforms, Se bioavailability | Czech Republic | AA:↑ CRC risk ge, interaction with rs5859 (SEP15) | [78] |
| 827/733 | Korea | none | [79] | |||||
| SEPP1 | Promoter (−4166), Exon 5 (rs3877899, rs6413428), 3'UTR (rs12055266, rs2972994, rs3797310) | 772/777 | USA | Global SEPP1 variants association with advanced distal colorectal adenoma | [76] | |||
| SEP15 | rs5859 | 832/705 | 3'UTR, SECIS | Sec-insertion efficiency | Czech Republic | no association alone, but interaction with rs3877899, rs7579, rs3797310, rs12055266 in SEPP1 | [78] | |
| 827/733 | Korea | A allele:↑ CRC risk | [79] | |||||
| SEP15 | rs5845 | 827/733 | 3′UTR | Sec-insertion efficiency | Korea | none | [79] | |
| rs35009941 | 772/777 | C > G | USA | G allele:↓ CRC, alone and in association with rs34195484, rs4077561, rs1128446, rs5018287, rs6539137,rs10778322 and rs35776976 in TXNRD1 | [76] | |||
| TXNRD1 | rs35009941 | 772/777 | C > G | USA | G allele:↓ CRC, alone and in association with rs34195484, rs4077561, rs1128446, rs5018287, rs6539137, rs10778322 and rs35776976 in TXNRD1 | [76] |
6. Genetic Variants in Selenoprotein Genes and Other Conditions
| Gene Symbol | SNP | Base Change | Cases/Controls | Target/Location | Functionality | Population | Association | Reference |
|---|---|---|---|---|---|---|---|---|
| LUNG CANCER | ||||||||
| GPX1 | rs1050450 | C > T | 237/234 | Pro198Leu | Enzymatic activity Pro > Leu | USA | Among old smokers, CC :↑ lung cancer | [88] |
| 315/313 | Finland / men | T allele: ↑ risk | [89] | |||||
| 95/176 | Poland | T allele: ↓ risk | [90] | |||||
| 432/798 | Denmark | T allele: ↓ risk | [91] | |||||
| 186/207 | Germany | T allele: ↓ risk | [112] | |||||
| GPX4 | rs713041 | C > T | 95/176 | 3′UTR, near SECIS | Sec-insertion efficiency C > T | Poland | T allele: ↓ risk | [90] |
| SEP15 | rs5859 | 325/287 | 3′UTR, SECIS | Sec-insertion efficiency | Poland | A allele: ↑risk in individuals with low Se status | [113] | |
| SEP15 | rs5845 | 325/287 | 3′UTR | Sec-insertion efficiency | Poland | none | [90] | |
| LARYNGEAL CANCER | ||||||||
| GPX1 | rs1050450 | C > T | 111/213 | Pro198Leu | Enzymatic activity Pro > Leu | Poland | T allele: ↓ risk | [90] |
| GPX4 | rs713041 | C > T | 325/287 | 3′UTR, near SECIS | Sec-insertion efficiency C > T | Poland | T allele: ↓ risk | [90] |
| SEP15 | rs5845 | 325/287 | 3′UTR | Sec-insertion efficiency | Poland | none | [90] | |
| BLADDER CANCER | ||||||||
| GPX1 | rs1050450 | C > T | 224/0 | Pro198Leu | Enzymatic activity Pro > Leu | USA | T allele: ↑ bladder cancer recurrence risk | [93] |
| 213/209 | Japan | T allele: ↑ risk | [92] | |||||
| CARDIOVASCULAR DISEASE | ||||||||
| GPX1 | rs1050450 | C > T | 184/0 | Pro198Leu | Enzymatic activity Pro > Leu | Japan/diabetic | T allele: ↑ CVD risk in diabetic patients and ↑ intima-media thickness | [114] |
| SELS | rs28665122, rs4965814, rs28628459, rs7178239 | tagSNPs | European Americans/ diabetic | Associated with measures of vascular calcification in European American familiesenriched for type 2 diabetes | [104] | |||
| KASHIN-BECK | ||||||||
| GPX1 | rs1050450 | C > T | 638/324 | Pro198Leu | Enzymatic activity Pro > Leu | China | none | [115] |
| China Han | T allele: ↑ KBD risk | [98] | ||||||
| GPX4 | rs713041 | C > T | 219/194 | 3′UTR, near SECIS | Sec-insertion efficiency C > T | China | none; ↓ GPX4 mRNA expression in Kashin-Beck patients | [99] |
| haplotype rs713041 -rs4807542 | 219/194 | China Han | haplotype A-T: ↓ KBD risk | [99] | ||||
| SEPP1 | rs3877899 | G > A | 167/166 | Ala234Thr | Plasma SePP isoforms, Se bioavailability | China | none | [116] |
| CROHN’S DISEASE | ||||||||
| SEPHS1 | rs7901303 | G > T | 351/853 | tagSNP | New Zealand-Caucasians | SNP-Serum Se interaction affecting Crohn’s disease risk | [13] | |
| rs17529609 | A > G | 351/853 | tagSNP | New Zealand-Caucasians | SNP-Serum Se interaction affecting Crohn’s disease risk | [13] | ||
| SEPSECS | rs1553153 | G > A | 351/853 | tagSNP | New Zealand-Caucasians | SNP-Serum Se interaction affecting Crohn’s disease risk | [13] | |
| TYPE 2 DIABETES | ||||||||
| IDI2 | rs225014 | 721 | Thr92Ala | Brazil | Ala variant: less active, associated with type 2 diabetes, interaction with PPARγ2 Pro12Ala | [106–108] | ||
| SEPP1 | rs28919926, rs146125471, rs16872779, rs7579 | 2446 | Hispanics, European American, African American | Associated with fasting insulin and first phase insulin response | [109] | |||
7. Conclusions and Perspectives
Conflicts of Interest
References
- Thomson, C.D. Selenium and iodine intakes and status in New Zealand and Australia. Br. J. Nutr. 2004, 91, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The argument for increasing selenium intake. Proc. Nutr. Soc. 2002, 61, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Koivistoinen, P.; Huttunen, J.K. Selenium in food and nutrition in finland. An overview on research and action. Ann. Clin. Res. 1986, 18, 13–17. [Google Scholar]
- Xia, Y.; Hill, K.E.; Byrne, D.W.; Xu, J.; Burk, R.F. Effectiveness of selenium supplements in a low-selenium area of china. Am. J. Clin. Nutr. 2005, 81, 829–834. [Google Scholar] [PubMed]
- Shamberger, R.J.; Frost, D.V. Possible protective effect of selenium against human cancer. Can. Med. Assoc. J. 1969, 100, 682. [Google Scholar] [PubMed]
- Waegeneers, N.; Thiry, C.; De Temmerman, L.; Ruttens, A. Predicted dietary intake of selenium by the general adult population in belgium. Food Addit. Contam. Part A 2013, 30, 278–285. [Google Scholar] [CrossRef]
- Bellinger, F.P.; Raman, A.V.; Reeves, M.A.; Berry, M.J. Regulation and function of selenoproteins in human disease. Biochem. J. 2009, 422, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.J.; Tujebajeva, R.M.; Copeland, P.R.; Xu, X.M.; Carlson, B.A.; Martin, G.W., 3rd; Low, S.C.; Mansell, J.B.; Grundner-Culemann, E.; Harney, J.W.; et al. Selenocysteine incorporation directed from the 3'UTR: Characterization of eukaryotic efsec and mechanistic implications. Biofactors 2001, 14, 17–24. [Google Scholar]
- Bermano, G.; Nicol, F.; Dyer, J.A.; Sunde, R.A.; Beckett, G.J.; Arthur, J.R.; Hesketh, J.E. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem. J. 1995, 311, 425–430. [Google Scholar] [PubMed]
- Schomburg, L.; Schweizer, U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim. Biophys. Acta. 2009, 1790, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Meplan, C.; Nicol, F.; Burtle, B.T.; Crosley, L.K.; Arthur, J.R.; Mathers, J.C.; Hesketh, J.E. Relative abundance of selenoprotein p isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid. Redox. Signal. 2009, 11, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Meplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein p gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the Selgen study). Faseb. J. 2007, 21, 3063–3074. [Google Scholar] [CrossRef] [PubMed]
- Gentschew, L.; Bishop, K.S.; Han, D.Y.; Morgan, A.R.; Fraser, A.G.; Lam, W.J.; Karunasinghe, N.; Campbell, B.; Ferguson, L.R. Selenium, selenoprotein genes and crohn’s disease in a case-control population from Auckland, New Zealand. Nutrients 2012, 4, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Korotkov, K.V.; Mehta, R.; Hatfield, D.L.; Rotimi, C.N.; Luke, A.; Prewitt, T.E.; Cooper, R.S.; Stock, W.; Vokes, E.E.; et al. Distribution and functional consequences of nucleotide polymorphisms in the 3'-untranslated region of the human sep15 gene. Cancer. Res. 2001, 61, 2307–2310. [Google Scholar]
- Korotkov, K.V.; Kumaraswamy, E.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. Association between the 15-kda selenoprotein and UDP-glucose:Glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 2001, 276, 15330–15336. [Google Scholar] [CrossRef] [PubMed]
- Meplan, C.; Crosley, L.K.; Nicol, F.; Horgan, G.W.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Functional effects of a common single-nucleotide polymorphism (GPx4c718t) in the glutathione peroxidase 4 gene: Interaction with sex. Am. J. Clin. Nutr. 2008, 87, 1019–1027. [Google Scholar] [PubMed]
- Bermano, G.; Arthur, J.R.; Hesketh, J.E. Role of the 3′ untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply. Biochem. J. 1996, 320, 891–895. [Google Scholar] [PubMed]
- Gautrey, H.; Nicol, F.; Sneddon, A.A.; Hall, J.; Hesketh, J. A T/C polymorphism in the GPx4 3′UTR affects the selenoprotein expression pattern and cell viability in transfected caco-2 cells. Biochim. Biophys. Acta. 2011, 1810, 284–291. [Google Scholar] [CrossRef]
- Hu, Y.J.; Diamond, A.M. Role of glutathione peroxidase 1 in breast cancer: Loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 2003, 63, 3347–3351. [Google Scholar] [PubMed]
- Ravn-Haren, G.; Olsen, A.; Tjonneland, A.; Dragsted, L.O.; Nexo, B.A.; Wallin, H.; Overvad, K.; Raaschou-Nielsen, O.; Vogel, U. Associations between GPx1 pro198leu polymorphism, erythrocyte GPx activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 2006, 27, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; McGovern, D.P.B.; Barrett, J.C.; Wang, K.; Radford-Smith, G.L.; Ahmad, T.; Lees, C.W.; Balschun, T.; Lee, J.; Roberts, R.; et al. Genome-wide meta-analysis increases to 71 the number of confirmed crohn's disease susceptibility loci. Nat. Genet. 2010, 42, 1118–1125. [Google Scholar]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar]
- Vithana, E.N.; Khor, C.C.; Qiao, C.Y.; Nongpiur, M.E.; George, R.; Chen, L.J.; Do, T.; Abu-Amero, K.K.; Huang, C.K.; Low, S.; et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat. Genet. 2012, 44, 1142–1146. [Google Scholar]
- Ye, Z.; Vasco, D.A.; Carter, T.C.; Brilliant, M.H.; Schrodi, S.J.; Shukla, S.K. Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to staphylococcus Aureus infections. Front. Genet. 2014, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 2014, 14, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Westlake, S. Cancer incidence and mortality in the United Kingdom and constituent countries, 2004–06. Health Stat. Q. 2009, 43, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 2006, 24, 2137–2150. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K. Breast cancer: Origins and evolution. J. Clin. Invest. 2007, 117, 3155–3163. [Google Scholar] [CrossRef] [PubMed]
- Ambrosone, C.B. Oxidants and antioxidants in breast cancer. Antioxid. Redox. Signal. 2000, 2, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Babaknejad, N.; Sayehmiri, F.; Sayehmiri, K.; Rahimifar, P.; Bahrami, S.; Delpesheh, A.; Hemati, F.; Alizadeh, S. The relationship between selenium levels and breast cancer: A systematic review and meta-analysis. Biol. Trace. Elem. Res. 2014, 159, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kulak, M.V.; Cyr, A.R.; Woodfield, G.W.; Bogachek, M.; Spanheimer, P.M.; Li, T.; Price, D.H.; Domann, F.E.; Weigel, R.J. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene 2013, 32, 4043–4051. [Google Scholar] [CrossRef] [PubMed]
- Jardim, B.V.; Moschetta, M.G.; Leonel, C.; Gelaleti, G.B.; Regiani, V.R.; Ferreira, L.C.; Lopes, J.R.; Zuccari, D.A. Glutathione and glutathione peroxidase expression in breast cancer: An immunohistochemical and molecular study. Oncol. Rep. 2013, 30, 1119–1128. [Google Scholar] [PubMed]
- Bera, S.; Weinberg, F.; Ekoue, D.N.; Ansenberger-Fricano, K.; Mao, M.; Bonini, M.G.; Diamond, A.M. Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function. Cancer Res. 2014, 74, 5118–5126. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.A.; Onay, U.V.; Wells, S.; Li, H.; Shi, E.J.; Andrulis, I.L.; Ozcelik, H. Genetic variants of gpx1 and sod2 and breast cancer risk at the ontario site of the breast cancer family registry. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Meplan, C.; Dragsted, L.O.; Ravn-Haren, G.; Tjonneland, A.; Vogel, U.; Hesketh, J. Association between polymorphisms in glutathione peroxidase and selenoprotein p genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS One 2013, 8, e73316. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.J.; Smith, A.M. Plasma selenium and plasma and erythrocyte glutathione peroxidase activity increase with estrogen during the menstrual cycle. J. Am. Coll. Nutr. 2003, 22, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.Y.; Baek, I.J.; Lee, B.J.; In, C.H.; Jung, E.Y.; Yon, J.M.; Ahn, B.; Kang, J.K.; Yu, W.J.; Yun, Y.W. Effects of 17beta-estradiol and tamoxifen on the selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) mrna expression in male reproductive organs of rats. J. Reprod. Dev. 2003, 49, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Yager, J.D. Endogenous estrogens as carcinogens through metabolic activation. J. Natl. Cancer Inst. Monogr. 2000, 27, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.A.; Hu, Y.J.; Diamond, A.M. Allelic loss at the sep15 locus in breast cancer. Cancer Therapy. 2003, 1, 293–298. [Google Scholar]
- Udler, M.; Maia, A.T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.; Easton, D.; Ponder, B.; et al. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol. 2007, 25, 3015–3023. [Google Scholar]
- Pellatt, A.J.; Wolff, R.K.; John, E.M.; Torres-Mejia, G.; Hines, L.M.; Baumgartner, K.B.; Giuliano, A.R.; Lundgreen, A.; Slattery, M.L. Sepp1 influences breast cancer risk among women with greater native american ancestry: The breast cancer health disparities study. PLoS One 2013, 8, e80554. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Gammon, M.D.; Santella, R.M.; Gaudet, M.M.; Britton, J.A.; Teitelbaum, S.L.; Terry, M.B.; Neugut, A.I.; Ambrosone, C.B. No association between glutathione peroxidase Pro198Leu polymorphism and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 2459–2461. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.G.; Hankinson, S.E.; Kraft, P.; Hunter, D.J. No association between GPX1 Pro198Leu and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 1821–1822. [Google Scholar] [PubMed]
- Cebrian, A.; Pharoah, P.D.; Ahmed, S.; Smith, P.L.; Luccarini, C.; Luben, R.; Redman, K.; Munday, H.; Easton, D.F.; Dunning, A.M.; et al. Tagging single-nucleotide polymorphisms in antioxidant defense enzymes and susceptibility to breast cancer. Cancer Res. 2006, 66, 1225–1233. [Google Scholar]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 2012, 61, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.C.; Combs, G.F., Jr.; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Davis, L.S.; Glover, R.A.; Graham, G.F.; Gross, E.G.; et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. JAMA 1996, 276, 1957–1963. [Google Scholar]
- Duffield-Lillico, A.J.; Slate, E.H.; Reid, M.E.; Turnbull, B.W.; Wilkins, P.A.; Combs, G.F., Jr.; Park, H.K.; Gross, E.G.; Graham, G.F.; Stratton, M.S.; et al. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J. Natl. Cancer Inst. 2003, 95, 1477–1481. [Google Scholar]
- Klein, E.A.; Thompson, I.M.; Lippman, S.M.; Goodman, P.J.; Albanes, D.; Taylor, P.R.; Coltman, C. Select: The selenium and vitamin E cancer prevention trial: Rationale and design. Prostate. Cancer Prostatic. Dis. 2000, 3, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The selenium and vitamin e cancer prevention trial (select). JAMA 2009, 301, 39–51. [Google Scholar] [PubMed]
- Kristal, A.R.; Darke, A.K.; Morris, J.S.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr.; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; et al. Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk. J. Natl. Cancer Inst. 2014, 106, djt456. [Google Scholar]
- Geybels, M.S.; van den Brandt, P.A.; Schouten, L.J.; van Schooten, F.J.; van Breda, S.G.; Rayman, M.P.; Green, F.R.; Verhage, B.A. Selenoprotein gene variants, toenail selenium levels, and risk for advanced prostate cancer. J. Natl. Cancer Inst. 2014, 106, dju003. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandt, P.A.; Zeegers, M.P.; Bode, P.; Goldbohm, R.A. Toenail selenium levels and the subsequent risk of prostate cancer: A prospective cohort study. Cancer Epidemiol. Biomarkers Prev. 2003, 12, 866–871. [Google Scholar]
- West, D.W.; Slattery, M.L.; Robison, L.M.; French, T.K.; Mahoney, A.W. Adult dietary intake and prostate cancer risk in Utah: A case-control study with special emphasis on aggressive tumors. Cancer Causes Control 1991, 2, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; FitzGerald, J.M.; Gleave, M.; Chambers, K. Intake of selenium in the prevention of prostate cancer: A systematic review and meta-analysis. Cancer Causes Control 2005, 16, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Dennert, G.; Zwahlen, M.; Brinkman, M.; Vinceti, M.; Zeegers, M.P.; Horneber, M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2011, 11. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21563143 (accessed on 11 May 2015). [Google Scholar] [CrossRef]
- Vinceti, M.; Dennert, G.; Crespi, C.M.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Del Giovane, C. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2014, 3. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24683040 (accessed on 11 May 2015). [Google Scholar] [CrossRef]
- Hurst, R.; Hooper, L.; Norat, T.; Lau, R.; Aune, D.; Greenwood, D.C.; Vieira, R.; Collings, R.; Harvey, L.J.; Sterne, J.A.; et al. Selenium and prostate cancer: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 111–122. [Google Scholar]
- Meplan, C.; Hesketh, J. Selenium and cancer: A story that should not be forgotten-insights from genomics. Cancer Treat. Res. 2014, 159, 145–166. [Google Scholar] [PubMed]
- Steinbrecher, A.; Meplan, C.; Hesketh, J.; Schomburg, L.; Endermann, T.; Jansen, E.; Akesson, B.; Rohrmann, S.; Linseisen, J. Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2958–2968. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.L.; Adami, H.O.; Gronberg, H.; Wiklund, F.; Green, F.R.; Rayman, M.P. Interaction between single nucleotide polymorphisms in selenoprotein p and mitochondrial superoxide dismutase determines prostate cancer risk. Cancer Res. 2008, 68, 10171–10177. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Xie, W.; Regan, M.M.; King, I.B.; Stampfer, M.J.; Kantoff, P.W.; Oh, W.K.; Chan, J.M. Single-nucleotide polymorphisms within the antioxidant defence system and associations with aggressive prostate cancer. BJU Int. 2011, 107, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Neuhouser, M.L.; Barnett, M.; Hudson, M.; Kristal, A.R.; Thornquist, M.; King, I.B.; Goodman, G.E.; Ambrosone, C.B. Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Arsova-Sarafinovska, Z.; Matevska, N.; Eken, A.; Petrovski, D.; Banev, S.; Dzikova, S.; Georgiev, V.; Sikole, A.; Erdem, O.; Sayal, A.; et al. Glutathione peroxidase 1 (GPx1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. Int. Urol. Nephrol. 2009, 41, 63–70. [Google Scholar]
- Karunasinghe, N.; Han, D.Y.; Goudie, M.; Zhu, S.T.; Bishop, K.; Wang, A.; Duan, H.; Lange, K.; Ko, S.; Medhora, R.; et al. Prostate disease risk factors among a New Zealand cohort. J. Nutrigenet. Nutrige. 2012, 5, 339–351. [Google Scholar]
- Penney, K.L.; Li, H.; Mucci, L.A.; Loda, M.; Sesso, H.D.; Stampfer, M.J.; Ma, J. Selenoprotein P genetic variants and mrna expression, circulating selenium, and prostate cancer risk and survival. Prostate 2013, 73, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Penney, K.L.; Schumacher, F.R.; Li, H.; Kraft, P.; Morris, J.S.; Kurth, T.; Mucci, L.A.; Hunter, D.J.; Kantoff, P.W.; Stampfer, M.J.; et al. A large prospective study of sep15 genetic variation, interaction with plasma selenium levels, and prostate cancer risk and survival. Cancer Prev. Res. 2010, 3, 604–610. [Google Scholar]
- Meplan, C.; Rohrmann, S.; Steinbrecher, A.; Schomburg, L.; Jansen, E.; Linseisen, J.; Hesketh, J. Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer. PLoS One 2012, 7, e48709. [Google Scholar] [CrossRef] [PubMed]
- Geybels, M.S.; Hutter, C.M.; Kwon, E.M.; Ostrander, E.A.; Fu, R.; Feng, Z.; Stanford, J.L.; Peters, U. Variation in selenoenzyme genes and prostate cancer risk and survival. Prostate 2013, 73, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Gerstenberger, J.P.; Bauer, S.R.; Van Blarigan, E.L.; Sosa, E.; Song, X.; Witte, J.S.; Carroll, P.R.; Chan, J.M. Selenoprotein and antioxidant genes and the risk of high-grade prostate cancer and prostate cancer recurrence. Prostate 2015, 75, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Cappellani, A.; Zanghi, A.; Di Vita, M.; Cavallaro, A.; Piccolo, G.; Veroux, P.; Lo Menzo, E.; Cavallaro, V.; de Paoli, P.; Veroux, M.; et al. Strong correlation between diet and development of colorectal cancer. Fron. Biosci. 2013, 18, 190–198. [Google Scholar]
- Peters, U.; Takata, Y. Selenium and the prevention of prostate and colorectal cancer. Mol. Nutr. Food Res. 2008, 52, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Duffield-Lillico, A.J.; Reid, M.E.; Turnbull, B.W.; Combs, G.F., Jr.; Slate, E.H.; Fischbach, L.A.; Marshall, J.R.; Clark, L.C. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: A summary report of the nutritional prevention of cancer trial. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 630–639. [Google Scholar] [PubMed]
- Hughes, D.J.; Fedirko, V.; Jenab, M.; Schomburg, L.; Meplan, C.; Freisling, H.; Bueno-de-Mesquita, H.B.; Hybsier, S.; Becker, N.P.; Czuban, M.; et al. Selenium status is associated with colorectal cancer risk in the european prospective investigation of cancer and nutrition cohort. Int. J. Cancer 2015, 136, 1149–1161. [Google Scholar]
- Peters, U.; Chatterjee, N.; Hayes, R.B.; Schoen, R.E.; Wang, Y.; Chanock, S.J.; Foster, C.B. Variation in the selenoenzyme genes and risk of advanced distal colorectal adenoma. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Bermano, G.; Pagmantidis, V.; Holloway, N.; Kadri, S.; Mowat, N.A.; Shiel, R.S.; Arthur, J.R.; Mathers, J.C.; Daly, A.K.; Broom, J.; et al. Evidence that a polymorphism within the 3′UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr. 2007, 2, 225–232. [Google Scholar]
- Meplan, C.; Hughes, D.J.; Pardini, B.; Naccarati, A.; Soucek, P.; Vodickova, L.; Hlavata, I.; Vrana, D.; Vodicka, P.; Hesketh, J.E. Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis 2010, 31, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.; Kim, D.H.; Relton, C.; Ahn, Y.O.; Hesketh, J. Polymorphisms in the selenoprotein s and 15-kda selenoprotein genes are associated with altered susceptibility to colorectal cancer. Genes Nutr. 2010, 5, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Cole-Ezea, P.; Swan, D.; Shanley, D.; Hesketh, J. Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Radic. Biol. Med. 2012, 53, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Saebo, M.; Skjelbred, C.F.; Nexo, B.A.; Hagen, P.C.; Bock, G.; Bowitz Lothe, I.M.; Johnson, E.; Aase, S.; Hansteen, I.L.; et al. GPx pro198leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. Cancer Lett. 2005, 229, 85–91. [Google Scholar]
- Hansen, R.D.; Krath, B.N.; Frederiksen, K.; Tjonneland, A.; Overvad, K.; Roswall, N.; Loft, S.; Dragsted, L.O.; Vogel, U.; Raaschou-Nielsen, O. GPx1 Pro(198)Leu polymorphism, erythrocyte GPx activity, interaction with alcohol consumption and smoking, and risk of colorectal cancer. Mutat. Res. 2009, 664, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Al-Taie, O.H.; Uceyler, N.; Eubner, U.; Jakob, F.; Mork, H.; Scheurlen, M.; Brigelius-Flohe, R.; Schottker, K.; Abel, J.; Thalheimer, A.; et al. Expression profiling and genetic alterations of the selenoproteins gi-gpx and sepp in colorectal carcinogenesis. Nutr. Cancer 2004, 48, 6–14. [Google Scholar]
- Curran, J.E.; Jowett, J.B.; Elliott, K.S.; Gao, Y.; Gluschenko, K.; Wang, J.; Abel Azim, D.M.; Cai, G.; Mahaney, M.C.; Comuzzie, A.G.; et al. Genetic variation in selenoprotein s influences inflammatory response. Nat. Genet. 2005, 37, 1234–1241. [Google Scholar]
- Shibata, T.; Arisawa, T.; Tahara, T.; Ohkubo, M.; Yoshioka, D.; Maruyama, N.; Fujita, H.; Kamiya, Y.; Nakamura, M.; Nagasaka, M.; et al. Selenoprotein s (SEPS1) gene À105G>A promoter polymorphism influences the susceptibility to gastric cancer in the japanese population. BMC Gastroenterol. 2009, 9, 2. [Google Scholar]
- Al-Taie, O.H.; Seufert, J.; Mork, H.; Treis, H.; Mentrup, B.; Thalheimer, A.; Starostik, P.; Abel, J.; Scheurlen, M.; Kohrle, J.; et al. A complex DNA-repeat structure within the selenoprotein p promoter contains a functionally relevant polymorphism and is genetically unstable under conditions of mismatch repair deficiency. Eur. J. Hum. Genet. 2002, 10, 499–504. [Google Scholar]
- Slattery, M.L.; Lundgreen, A.; Welbourn, B.; Corcoran, C.; Wolff, R.K. Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer. PLoS One 2012, 7, e37312. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Bamlet, W.R.; Ebbert, J.O.; Taylor, W.R.; De Andrade, M. Glutathione pathway genes and lung cancer risk in young and old populations. Carcinogenesis 2004, 25, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Ratnasinghe, D.; Tangrea, J.A.; Andersen, M.R.; Barrett, M.J.; Virtamo, J.; Taylor, P.R.; Albanes, D. Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 2000, 60, 6381–6383. [Google Scholar] [PubMed]
- Jaworska, K.; Gupta, S.; Durda, K.; Muszynska, M.; Sukiennicki, G.; Jaworowska, E.; Grodzki, T.; Sulikowski, M.; Woloszczyk, P.; Wojcik, J.; et al. A low selenium level is associated with lung and laryngeal cancers. PLoS One 2013, 8, e59051. [Google Scholar]
- Raaschou-Nielsen, O.; Sorensen, M.; Hansen, R.D.; Frederiksen, K.; Tjonneland, A.; Overvad, K.; Vogel, U. GPx1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer. Cancer Lett. 2007, 247, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, Y.; Habuchi, T.; Tsuchiya, N.; Wang, L.; Oyama, C.; Sato, K.; Nishiyama, H.; Ogawa, O.; Kato, T. Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant. J. Urol. 2004, 172, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liang, D.; Grossman, H.B.; Wu, X. Glutathione peroxidase 1 gene polymorphism and risk of recurrence in patients with superficial bladder cancer. Urology 2005, 66, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, P.; Stewart, P.A.; Hutchinson, A.; Rothman, N.; Linet, M.S.; Inskip, P.D.; Rajaraman, P. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cao, Q.; Qin, C.; Shao, P.; Wu, Y.; Wang, M.; Zhang, Z.; Yin, C. Gpx-1 polymorphism (rs1050450) contributes to tumor susceptibility: Evidence from meta-analysis. J. Cancer Res. Clin. Oncol. 2011, 137, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Kuzuya, M.; Ando, F.; Iguchi, A.; Shimokata, H. Glutathione peroxidase 1 Pro198Leu variant contributes to the metabolic syndrome in men in a large Japanese cohort. Am. J. Clin. Nutr. 2008, 87, 1939–1944. [Google Scholar] [PubMed]
- Cominetti, C.; de Bortoli, M.C.; Purgatto, E.; Ong, T.P.; Moreno, F.S.; Garrido, A.B., Jr.; Cozzolino, S.M. Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition 2011, 27, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.M.; Mo, X.Y.; Zou, X.Z.; Song, R.X.; Sun, W.Y.; Lu, W.; Chen, Q.; Yu, Y.X.; Zang, W.J. Association study between polymorphisms in selenoprotein genes and susceptibility to kashin-beck disease. Osteoarthritis cartilage 2010, 18, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Du, X.H.; Dai, X.X.; Xia Song, R.; Zou, X.Z.; Yan Sun, W.; Mo, X.Y.; Lu Bai, G.; Xiong, Y.M. SNP and mRNA expression for glutathione peroxidase 4 in kashin-beck disease. Br. J. Nutr. 2012, 107, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.D.; McLachlan, S.K.; Parnell, W.R.; Wilson, N.; Wohlers, M.; Scragg, R.; Schaaf, D.; Fitzgerald, E.D. Serum selenium concentrations and dietary selenium intake of new zealand children aged 5–14 years. Br. J. Nutr. 2007, 97, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.R.; Duraes, C.; Mendes, A.; Prazeres, H.; Alvelos, M.I.; Moreira, C.S.; Canedo, P.; Esteves, C.; Neves, C.; Carvalho, D.; et al. A polymorphism in the promoter region of the selenoprotein s gene (Seps1) contributes to Hashimoto’s thyroiditis susceptibility. J. Clin. Endocrinol. Metab. 2014, 99, E719–723. [Google Scholar]
- Moses, E.K.; Johnson, M.P.; Tommerdal, L.; Forsmo, S.; Curran, J.E.; Abraham, L.J.; Charlesworth, J.C.; Brennecke, S.P.; Blangero, J.; Austgulen, R. Genetic association of preeclampsia to the inflammatory response gene seps1. Am. J. Obstet. Gynecol. 2008, 198, 336 e331–335. [Google Scholar] [PubMed]
- Martinez, A.; Santiago, J.L.; Varade, J.; Marquez, A.; Lamas, J.R.; Mendoza, J.L.; de la Calle, H.; Diaz-Rubio, M.; de la Concha, E.G.; Fernandez-Gutierrez, B.; et al. Polymorphisms in the selenoprotein s gene: Lack of association with autoimmune inflammatory diseases. BMC Genomics 2008, 9, 329. [Google Scholar]
- Cox, A.J.; Lehtinen, A.B.; Xu, J.; Langefeld, C.D.; Freedman, B.I.; Carr, J.J.; Bowden, D.W. Polymorphisms in the selenoprotein s gene and subclinical cardiovascular disease in the diabetes heart study. Acta Diabetol. 2013, 50, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Marinou, I.; Walters, K.; Dickson, M.C.; Binks, M.H.; Bax, D.E.; Wilson, A.G. Evidence of epistasis between interleukin 1 and selenoprotein-S with susceptibility to rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Canani, L.H.; Capp, C.; Dora, J.M.; Meyer, E.L.; Wagner, M.S.; Harney, J.W.; Larsen, P.R.; Gross, J.L.; Bianco, A.C.; Maia, A.L. The type 2 deiodinase a/g (Thr92ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2005, 90, 3472–3478. [Google Scholar] [CrossRef] [PubMed]
- Dora, J.M.; Machado, W.E.; Rheinheimer, J.; Crispim, D.; Maia, A.L. Association of the type 2 deiodinase Thr92ala polymorphism with type 2 diabetes: Case-control study and meta-analysis. Eur. J. Endocrinol. 2010, 163, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Estivalet, A.A.; Leiria, L.B.; Dora, J.M.; Rheinheimer, J.; Boucas, A.P.; Maia, A.L.; Crispim, D. D2 Thr92ala and ppargamma2 Pro12ala polymorphisms interact in the modulation of insulin resistance in type 2 diabetic patients. Obesity (Silver Spring) 2011, 19, 825–832. [Google Scholar] [CrossRef]
- Hellwege, J.N.; Palmer, N.D.; Ziegler, J.T.; Langefeld, C.D.; Lorenzo, C.; Norris, J.M.; Takamura, T.; Bowden, D.W. Genetic variants in selenoprotein P plasma 1 gene (Sepp1) are associated with fasting insulin and first phase insulin response in hispanics. Gene 2014, 534, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Misu, H.; Takamura, T.; Takayama, H.; Hayashi, H.; Matsuzawa-Nagata, N.; Kurita, S.; Ishikura, K.; Ando, H.; Takeshita, Y.; Ota, T.; et al. A liver-derived secretory protein, selenoprotein p, causes insulin resistance. Cell Metab. 2010, 12, 483–495. [Google Scholar]
- Yang, S.J.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Serum selenoprotein P levels in patients with type 2 diabetes and prediabetes: Implications for insulin resistance, inflammation, and atherosclerosis. J. Clin. Endocrinol. Metab. 2011, 96, E1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, A.; Illig, T.; Korb, K.; Klopp, N.; Zietemann, V.; Wolke, G.; Meese, E.; Sybrecht, G.; Kronenberg, F.; Cebulla, M.; et al. Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years. BMC Cancer 2008, 8, 60. [Google Scholar]
- Jablonska, E.; Gromadzinska, J.; Sobala, W.; Reszka, E.; Wasowicz, W. Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur. J. Nutr. 2008, 47, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hamanishi, T.; Furuta, H.; Kato, H.; Doi, A.; Tamai, M.; Shimomura, H.; Sakagashira, S.; Nishi, M.; Sasaki, H.; Sanke, T.; et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 2004, 53, 2455–2460. [Google Scholar]
- Huang, L.; Shi, Y.; Lu, F.; Zheng, H.; Liu, X.; Gong, B.; Yang, J.; Lin, Y.; Cheng, J.; Ma, S.; et al. Association study of polymorphisms in selenoprotein genes and kashin-beck disease and serum selenium/iodine concentration in a Tibetan population. PLoS One 2013, 8, e71411. [Google Scholar]
- Sun, W.; Wang, X.; Zou, X.; Song, R.; Du, X.; Hu, J.; Xiong, Y. Selenoprotein P gene r25191G/A polymorphism and quantification of selenoprotein p mRNA level in patients with kashin-beck disease. Br. J. Nutr. 2010, 104, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méplan, C. Selenium and Chronic Diseases: A Nutritional Genomics Perspective. Nutrients 2015, 7, 3621-3651. https://doi.org/10.3390/nu7053621
Méplan C. Selenium and Chronic Diseases: A Nutritional Genomics Perspective. Nutrients. 2015; 7(5):3621-3651. https://doi.org/10.3390/nu7053621
Chicago/Turabian StyleMéplan, Catherine. 2015. "Selenium and Chronic Diseases: A Nutritional Genomics Perspective" Nutrients 7, no. 5: 3621-3651. https://doi.org/10.3390/nu7053621
APA StyleMéplan, C. (2015). Selenium and Chronic Diseases: A Nutritional Genomics Perspective. Nutrients, 7(5), 3621-3651. https://doi.org/10.3390/nu7053621
