Next Article in Journal
Molecular Pathways Underlying Cholesterol Homeostasis
Previous Article in Journal
Immunological Comparison of Native and Recombinant Hen’s Egg Yolk Allergen, Chicken Serum Albumin (Gal d 5), Produced in Kluveromyces lactis
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessReview
Nutrients 2018, 10(6), 758; https://doi.org/10.3390/nu10060758

FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review

1
Laboratory of Nutritional Biochemistry, Centre of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
2
Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong 3220, Australia
*
Author to whom correspondence should be addressed.
Received: 11 May 2018 / Revised: 6 June 2018 / Accepted: 11 June 2018 / Published: 13 June 2018
(This article belongs to the Special Issue Personalized Nutrition)
View Full-Text   |   Download PDF [887 KB, uploaded 13 June 2018]   |  

Abstract

The role of n-3 long chain polyunsaturated fatty acids (LC n-3 PUFA) in reducing the risk of type 2 diabetes (T2DM) is not well established. The synthesis of LC n-3 PUFA requires fatty acid desaturase enzymes, which are encoded by the FADS gene. It is unclear if FADS polymorphism and dietary fatty acid intake can influence plasma or erythrocyte membrane fatty acid profile and thereby the risk of T2DM. Thus, the aim of this systematic review was to assess the current evidence for an effect of FADS polymorphism on T2DM risk and understand its associations with serum/erythrocyte and dietary LC n-3 PUFA. A systematic search was performed using PubMed, Embase, Cochrane and Scopus databases. A total of five studies met the inclusion criteria and were included in the present review. This review identified that FADS polymorphism may alter plasma fatty acid composition and play a protective role in the development of T2DM. Serum and erythrocyte LC n-3 PUFA levels were not associated with risk of T2DM, while dietary intake of LC n-3 PUFA was associated with lower risk of T2DM in one study only. The effect of LC n-3 PUFA consumption on associations between FADS polymorphism and T2DM warrants further investigation. View Full-Text
Keywords: FADS polymorphism; omega-3 fatty acids; type 2 diabetes FADS polymorphism; omega-3 fatty acids; type 2 diabetes
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Brayner, B.; Kaur, G.; Keske, M.A.; Livingstone, K.M. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients 2018, 10, 758.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top