Menaquinone Content of Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Foods
2.2. Vitamin K Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cranenburg, E.C.; Schurgers, L.J.; Vermeer, C. Vitamin K: The coagulation vitamin that became omnipotent. Thromb. Haemost. 2007, 98, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 2008, 100, 530–547. [Google Scholar] [PubMed]
- Ferland, G. The discovery of vitamin K and its clinical applications. Ann. Nutr. Metab. 2012, 61, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Bolton-Smith, C. The UK food data-base for vitamin K and why we need it. Food Chem. 2000, 68, 213–218. [Google Scholar] [CrossRef]
- Koivu, T.J.; Piironen, V.I.; Henttonen, S.K.; Mattila, P.H. Determination of Phylloquinone in Vegetables, Fruits, and Berries by High-Performance Liquid Chromatography with Electrochemical Detection. J. Agric. Food Chem. 1997, 45, 4644–4649. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Vermeer, C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000, 30, 298–307. [Google Scholar] [PubMed]
- Gijsbers, B.L.; Jie, K.S.; Vermeer, C. Effect of food composition on vitamin K absorption in human volunteers. Br. J. Nutr. 1996, 76, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef] [PubMed]
- Gast, G.C.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.; van der Schouw, Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, K.; Rohrmann, S.; Kaaks, R.; Linseisen, J. Dietary vitamin K intake in relation to cancer incidence and mortality: Results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am. J. Clin. Nutr. 2010, 91, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.; Dalmeijer, G.W.; Vermeer, C.; Drummen, N.E.; Knapen, M.H.; van der Schouw, Y.T.; Beulens, J.W. Association Between Vitamin K and the Metabolic Syndrome: A 10-Year Follow-Up Study in Adults. J. Clin. Endocrinol. Metab. 2015, 100, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.; Drummen, N.E.; Navis, G.; Bakker, S.J.; de Borst, M.H. Vitamin K status and mortality after kidney transplantation: A cohort study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Gu, Y.M.; Thijs, L.; Knapen, M.H.; Salvi, E.; Citterio, L.; Petit, T.; Carpini, S.D.; Zhang, Z.; Jacobs, L.; et al. Inactive matrix Gla protein is causally related to adverse health outcomes: A Mendelian randomization study in a Flemish population. Hypertension 2015, 65, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Grober, U.; Reichrath, J.; Holick, M.F.; Kisters, K. Vitamin K: An old vitamin in a new perspective. Dermatoendocrinol 2014, 6, e968490. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J.; Fu, X.; Booth, S.L. Vitamin K nutrition, metabolism, and requirements: Current concepts and future research. Adv. Nutr. 2012, 3, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, L.J.; Vermeer, C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim. Biophys. Acta 2002, 1570, 27–32. [Google Scholar] [CrossRef]
- Vissers, L.E.; Dalmeijer, G.W.; Boer, J.M.; Verschuren, W.M.; van der Schouw, Y.T.; Beulens, J.W. The relationship between vitamin K and peripheral arterial disease. Atherosclerosis 2016, 252, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Bates, C.J.; Yan, L.; Harrington, D.J.; Shearer, M.J.; Prentice, A. Determination of phylloquinone (vitamin K1) in plasma and serum by HPLC with fluorescence detection. Clin. Chim. Acta 2004, 347, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Onodera, K.; Yamato, S.; Shimada, K. Simultaneous determination of vitamin K analogs in human serum by sensitive and selective high-performance liquid chromatography with electrochemical detection. Nutrition 2003, 19, 661–665. [Google Scholar] [CrossRef]
- Suhara, Y.; Kamao, M.; Tsugawa, N.; Okano, T. Method for the determination of vitamin K homologues in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal. Chem. 2005, 77, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Fu, X.; Dolnikowski, G.G.; Saltzman, E.; Booth, S.L. Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B 2014, 963, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Harshman, S.G.; Shen, X.; Haytowitz, D.B.; Karl, J.P.; Wolfe, B.E.; Booth, S.L. Multiple Vitamin K Forms Exist in Dairy Foods. Curr. Dev. Nutr. 2017, 1, e000638. [Google Scholar] [CrossRef]
- Booth, S.L. Vitamin K: Food composition and dietary intakes. Food Nutr. Res. 2012, 56, 5505. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.H.; Braam, L.A.; Teunissen, K.J.; Zwijsen, R.M.; Theuwissen, E.; Vermeer, C. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population. J. Nutr. Sci. 2015, 4, e35. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Shen, X.; Finnan, E.G.; Haytowitz, D.B.; Booth, S.L. Measurement of Multiple Vitamin K Forms in Processed and Fresh-Cut Pork Products in the U.S. Food Supply. J. Agric. Food Chem. 2016, 64, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.H.; Braam, L.A.; Drummen, N.E.; Bekers, O.; Hoeks, A.P.; Vermeer, C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb. Haemost. 2015, 113, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Liabeuf, S.; Bourron, O.; Vemeer, C.; Theuwissen, E.; Magdeleyns, E.; Aubert, C.E.; Brazier, M.; Mentaverri, R.; Hartemann, A.; Massy, Z.A. Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, E.G.; van Schoor, N.M.; Lips, P.; Magdeleyns, E.J.; Deeg, D.J.; Vermeer, C.; den Heijer, M. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas 2014, 77, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Pivin, E.; Ponte, B.; Pruijm, M.; Ackermann, D.; Guessous, I.; Ehret, G.; Liu, Y.P.; Drummen, N.E.; Knapen, M.H.; Pechere-Bertschi, A.; et al. Inactive Matrix Gla-Protein Is Associated with Arterial Stiffness in an Adult Population-Based Study. Hypertension 2015, 66, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Mayer, O., Jr.; Seidlerova, J.; Wohlfahrt, P.; Filipovsky, J.; Vanek, J.; Cifkova, R.; Windrichova, J.; Topolcan, O.; Knapen, M.H.; Drummen, N.E.; et al. Desphospho-uncarboxylated matrix Gla protein is associated with increased aortic stiffness in a general population. J. Hum. Hypertens. 2016, 30, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Mayer, O., Jr.; Seidlerová, J.; Vaněk, J.; Karnosová, P.; Bruthans, J.; Filipovský, J.; Wohlfahrt, P.; Cífková, R.; Windrichová, J.; Knapen, M.H.J.; Drummen, N.E.A.; Vermeer, C. The abnormal status of uncarboxylated matrix Gla protein species represents an additional mortality risk in heart failure patients with vascular disease. Int. J. Cardiol. 2016, 203, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Ikari, Y.; Torii, S.; Shioi, A.; Okano, T. Impact of menaquinone-4 supplementation on coronary artery calcification and arterial stiffness: An open label single arm study. Nutr. J. 2016, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorssoni, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res. 2014, 58, 25145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Goede, J.; Geleijnse, J.M.; Ding, E.L.; Soedamah-Muthu, S.S. Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2015, 73, 259–275. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schunemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Rice, B.H. Dairy and Cardiovascular Disease: A Review of Recent Observational Research. Curr. Nutr. Rep. 2014, 3, 130–138. [Google Scholar] [CrossRef] [PubMed]
Type of Cheese | Fat (%) | Vitamin K1 (ng/g) | MK-4 (ng/g) | MK-5 (ng/g) | MK-6 (ng/g) | MK-7 (ng/g) | MK-8 (ng/g) | MK-9 (ng/g) | MK-10 (ng/g) | Total Vitamin K2 (ng/g) |
---|---|---|---|---|---|---|---|---|---|---|
Gouda 4 weeks | 50 | 37.6 | 145 | 4.3 | 4.8 | 14.8 | 72.0 | 232 | 0.0 | 473 |
Gouda 13 weeks | 50 | 39.6 | 148 | 3.8 | 4.3 | 15.9 | 87.6 | 396 | 0.0 | 656 |
Gouda vacuum 13 weeks | 50 | 34.4 | 115 | 3.6 | 4.7 | 17.3 | 94.2 | 424 | 0.0 | 659 |
Gouda 26 weeks | 50 | 39.4 | 208 | 4.2 | 4.8 | 16.2 | 92.8 | 403 | 0.0 | 729 |
Gouda vacuum 26 weeks | 50 | 37.7 | 154 | 4.3 | 4.9 | 15.7 | 96.8 | 368 | 0.0 | 644 |
Milner 4 weeks | 30 | 22.0 | 77.6 | 3.5 | 3.0 | 9.6 | 58.0 | 284 | 0.0 | 436 |
Milner 13 weeks | 30 | 23.1 | 84.1 | 4.1 | 3.4 | 10.7 | 65.2 | 306 | 0.0 | 474 |
Milner 26 weeks | 30 | 22.8 | 102 | 4.2 | 3.7 | 10.6 | 62.8 | 268 | 0.0 | 451 |
Slankie 4 weeks | 20 | 17.2 | 80.9 | 3.6 | 4.0 | 9.9 | 42.4 | 192 | 0.0 | 333 |
Slankie 13 weeks | 20 | 19.0 | 64.2 | 4.3 | 4.5 | 8.9 | 37.8 | 150 | 0.0 | 270 |
Slankie 26 weeks | 20 | 19.8 | 78.9 | 4.9 | 5.4 | 9.8 | 54.5 | 233 | 0.0 | 387 |
Edam | 40 | 37.6 | 113 | 0.0 | 0.0 | 0.0 | 74.6 | 459 | 0.0 | 647 |
Maasdam 5 weeks | 45 | 35.3 | 115 | 4.5 | 4.7 | 14.5 | 84.8 | 266 | 0.0 | 490 |
Whole curd FC | 8.8 | 9.4 | 22.6 | 4.8 | 2.8 | 5.5 | 13.9 | 44.3 | 0.0 | 94 |
Whole curd AH | 8 | 12.9 | 25.7 | 2.3 | 1.4 | 4.0 | 20.5 | 81.4 | 0.0 | 135 |
Demi-skimmed curd AH | 3 | 4.9 | 15.5 | 1.8 | 1.5 | 5.3 | 19.0 | 97.3 | 0.0 | 140 |
Jersey (from raw milk) | 50 | 42.8 | 60.3 | 16.2 | 13.9 | 38.4 | 154 | 506 | 0.0 | 789 |
Loverendale (from raw milk) | 50 | 46.8 | 166 | 16.5 | 6.3 | 13.2 | 87.4 | 315 | 0.0 | 604 |
Type of Cheese | Vitamin K1 (ng/g) | MK-4 (ng/g) | MK-5 (ng/g) | MK-6 (ng/g) | MK-7 (ng/g) | MK-8 (ng/g) | MK-9 (ng/g) | MK-10 (ng/g) | Total Vitamin K2 (ng/g) |
---|---|---|---|---|---|---|---|---|---|
French Cheeses | |||||||||
Brie | 49.2 | 125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125 |
Boursin | 45.5 | 89.3 | 0.0 | 1.1 | 3.3 | 8.2 | 9.1 | 0.0 | 111 |
Camembert | 25.0 | 79.5 | 13.4 | 10.1 | 32.4 | 151 | 395 | 0.0 | 681 |
Roquefort | 65.6 | 131 | 6.4 | 4.8 | 11.6 | 50.9 | 176 | 0.0 | 381 |
Münster | 20.6 | 102 | 4.5 | 4.6 | 83.7 | 412 | 194 | 0.0 | 801 |
British Cheeses | |||||||||
Cheddar | 21.6 | 51.2 | 0 | 3.8 | 18.8 | 36.4 | 125 | 0.0 | 235 |
Stilton | 36.2 | 100 | 9.4 | 6.0 | 14.0 | 66.3 | 298 | 0.0 | 494 |
Greek Cheese | |||||||||
Feta | 13.5 | 1.0 | 0.0 | 3.5 | 11.8 | 23.3 | 76.9 | 0.0 | 117 |
Italian Cheeses | |||||||||
Mozzarella | 15.0 | 53.1 | 1.6 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 62.2 |
Parmesan (grana padano) | 20.6 | 0.0 | 0.0 | 0.5 | 1.0 | 1.5 | 0.0 | 0.0 | 3 |
Gorgonzola | 17.3 | 111 | 0.0 | 1.7 | 30.7 | 2.4 | 2.5 | 5.1 | 153 |
Pecorino | 55.6 | 93.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 93.7 |
Swiss Cheeses | |||||||||
Emmenthal | 24.1 | 89.5 | 21.5 | 0.0 | 0.0 | 0.0 | 0.0 | 322 | 433 |
Gruyère | 25.0 | 51.5 | 13.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.3 |
Raclette | 15.5 | 47.7 | 4.0 | 3.1 | 11.3 | 47.7 | 209 | 0.0 | 323 |
Norwegian Cheeses | |||||||||
Gamalost | 1.8 | 10.3 | 6.2 | 2.9 | 9.7 | 51.2 | 440 | 22 | 542 |
Norvegia | 43.7 | 51.0 | 0.0 | 3.0 | 13.3 | 52.5 | 295 | 0 | 415 |
Type of Food | Vitamin K1 (ng/g) | MK-4 (ng/g) | MK-5 (ng/g) | MK-6 (ng/g) | MK-7 (ng/g) | MK-8 (ng/g) | MK-9 (ng/g) | MK-10 (ng/g) | Total Vitamin K2 (ng/g) |
---|---|---|---|---|---|---|---|---|---|
Meat | |||||||||
Minced meat | 10.9 | 76.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 76.1 |
Pork cutlet | 0.0 | 10.5 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 11.6 |
Beef (meat) | 0.2 | 13.9 | 0.0 | 0.0 | 1.3 | 3.7 | 0.0 | 0.0 | 18.9 |
Beef (liver) | 22.9 | 2.4 | 0.0 | 11.2 | 49.9 | 16 | 14.6 | 18.3 | 112 |
Pork (meat) | 0.0 | 13.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.6 |
Pork (liver) | 0.0 | 2.8 | 0.0 | 10.5 | 5.1 | 0.0 | 0.0 | 0.0 | 18.4 |
Chicken (meat) | 0.0 | 101 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 101 |
Deer (back) | 24.3 | 8.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.8 |
Fish | |||||||||
Mackerel | 5.1 | 6.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.2 |
Eel | 13 | 631 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 631 |
Plaice | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 49 | 0.0 | 0.0 | 52.8 |
Prawns | 0.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 |
Salmon | 1.3 | 5.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 |
Herring | 1.1 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 |
Vegetables | |||||||||
Natto | 321 | 0.0 | 72 | 124 | 9965 | 824 | 0.0 | 0.0 | 10985 |
Sauerkraut | 224 | 4.3 | 8.6 | 15.9 | 2.3 | 8.9 | 15 | 0.0 | 55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermeer, C.; Raes, J.; Van ’t Hoofd, C.; Knapen, M.H.J.; Xanthoulea, S. Menaquinone Content of Cheese. Nutrients 2018, 10, 446. https://doi.org/10.3390/nu10040446
Vermeer C, Raes J, Van ’t Hoofd C, Knapen MHJ, Xanthoulea S. Menaquinone Content of Cheese. Nutrients. 2018; 10(4):446. https://doi.org/10.3390/nu10040446
Chicago/Turabian StyleVermeer, Cees, Joyce Raes, Cynthia Van ’t Hoofd, Marjo H. J. Knapen, and Sofia Xanthoulea. 2018. "Menaquinone Content of Cheese" Nutrients 10, no. 4: 446. https://doi.org/10.3390/nu10040446
APA StyleVermeer, C., Raes, J., Van ’t Hoofd, C., Knapen, M. H. J., & Xanthoulea, S. (2018). Menaquinone Content of Cheese. Nutrients, 10(4), 446. https://doi.org/10.3390/nu10040446