Next Article in Journal
Sea State Observation through a Three-Antenna Hybrid XT/AT InSAR Configuration: A Preliminary Study Based on the InSAeS4 Airborne System
Next Article in Special Issue
Examining the Influence of Crop Residue Burning on Local PM2.5 Concentrations in Heilongjiang Province Using Ground Observation and Remote Sensing Data
Previous Article in Journal
Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery
Previous Article in Special Issue
Analyzing the Potential Risk of Climate Change on Lyme Disease in Eastern Ontario, Canada Using Time Series Remotely Sensed Temperature Data and Tick Population Modelling
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(8), 791; doi:10.3390/rs9080791

Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level

1
Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
2
ISPRA Italian National Institute for Environmental Protection and Research, 00144 Rome, Italy
3
ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development—Atmospheric Pollution Laboratory, 40129 Bologna, Italy
*
Author to whom correspondence should be addressed.
Received: 4 July 2017 / Revised: 19 July 2017 / Accepted: 28 July 2017 / Published: 1 August 2017
(This article belongs to the Special Issue Remote Sensing Applications to Human Health)
View Full-Text   |   Download PDF [2106 KB, uploaded 1 August 2017]   |  

Abstract

This study is the follow up of the URBAN-MAES pilot implemented in the framework of the EnRoute project. The study aims at mapping and assessing the process of particulate matter (PM10) and tropospheric ozone (O3) removal by various forest and shrub ecosystems. Different policy levels and environmental contexts were considered, namely the Metropolitan city of Rome and, at a wider level, the Latium region. The approach involves characterization of the main land cover and ecosystems using Sentinel-2 images, enabling a detailed assessment of Ecosystem Service (ES), and monetary valuation based on externality values. The results showed spatial variations in the pattern of PM10 and O3 removal inside the Municipality and in the more rural Latium hinterland, reflecting the spatial dynamics of the two pollutants. Evergreen species displayed higher PM10 removal efficiency, whereas deciduous species showed higher O3 absorption in both rural and urban areas. The overall pollution removal accounted for 5123 and 19,074 Mg of PM10 and O3, respectively, with a relative monetary benefit of 161 and 149 Million Euro for PM10 and O3, respectively. Our results provide spatially explicit evidence that may assist policymakers in land-oriented decisions towards improving Green Infrastructure and maximizing ES provision at different governance levels. View Full-Text
Keywords: Ecosystem Services; Sentinel-2; MAES; Geographic Information Systems; Green Infrastructure; pollutant removal; human health; well-being Ecosystem Services; Sentinel-2; MAES; Geographic Information Systems; Green Infrastructure; pollutant removal; human health; well-being
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Congedo, L.; Munafò, M.; Ciancarella, L.; Manes, F. Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level. Remote Sens. 2017, 9, 791.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top