Next Article in Journal
Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars
Next Article in Special Issue
Estimating Tree Frontal Area in Urban Areas Using Terrestrial LiDAR Data
Previous Article in Journal
The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data
Previous Article in Special Issue
Quantitative Estimation of the Velocity of Urbanization in China Using Nighttime Luminosity Data
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2016, 8(2), 151; doi:10.3390/rs8020151

Mapping Urban Land Use by Using Landsat Images and Open Social Data

1
,
1,2,* , 1
and
1,2
1
Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084, China
2
Joint Center for Global Change Studies, Beijing 100875, China
*
Author to whom correspondence should be addressed.
Academic Editors: Yuhong He, Qihao Weng, Magaly Koch and Prasad S. Thenkabail
Received: 23 October 2015 / Revised: 31 January 2016 / Accepted: 4 February 2016 / Published: 17 February 2016
View Full-Text   |   Download PDF [3683 KB, uploaded 17 February 2016]   |  

Abstract

High-resolution urban land use maps have important applications in urban planning and management, but the availability of these maps is low in countries such as China. To address this issue, we have developed a protocol to identify urban land use functions over large areas using satellite images and open social data. We first derived parcels from road networks contained in Open Street Map (OSM) and used the parcels as the basic mapping unit. We then used 10 features derived from Points of Interest (POI) data and two indices obtained from Landsat 8 Operational Land Imager (OLI) images to classify parcels into eight Level I classes and sixteen Level II classes of land use. Similarity measures and threshold methods were used to identify land use types in the classification process. This protocol was tested in Beijing, China. The results showed that the generated land use map had an overall accuracy of 81.04% and 69.89% for Level I and Level II classes, respectively. The map revealed significantly more details of the spatial pattern of land uses in Beijing than the land use map released by the government. View Full-Text
Keywords: urban land parcel; remote sensing; social data; land use urban land parcel; remote sensing; social data; land use
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top