Next Article in Journal
Optimized 3D Street Scene Reconstruction from Driving Recorder Images
Next Article in Special Issue
Validation of the Surface Downwelling Solar Irradiance Estimates of the HelioClim-3 Database in Egypt
Previous Article in Journal
Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest
Previous Article in Special Issue
Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation
Article Menu

Export Article

Correction published on 21 October 2015, see Remote Sens. 2015, 7(10), 13842.

Open AccessArticle
Remote Sens. 2015, 7(7), 9070-9090; doi:10.3390/rs70709070

Short-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud Index

Department of Physics, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
*
Author to whom correspondence should be addressed.
Academic Editors: Richard Müller and Prasad S. Thenkabail
Received: 30 April 2015 / Revised: 2 July 2015 / Accepted: 6 July 2015 / Published: 17 July 2015
(This article belongs to the Special Issue Remote Sensing of Solar Surface Radiation)
View Full-Text   |   Download PDF [3338 KB, uploaded 17 July 2015]   |  

Abstract

The cloud index is a key parameter of the Heliosat method. This method is widely used to calculate solar irradiance on the Earth’s surface from Meteosat visible channel images. Moreover, cloud index images are the basis of short-term forecasting of solar irradiance and photovoltaic power production. For this purpose, cloud motion vectors are derived from consecutive images, and the motion of clouds is extrapolated to obtain forecasted cloud index images. The cloud index calculation is restricted to the daylight hours, as long as SEVIRI HR-VIS images are used. Hence, this forecast method cannot be used before sunrise. In this paper, a method is introduced that can be utilized a few hours before sunrise. The cloud information is gained from the brightness temperature difference (BTD) of the 10.8 µm and 3.9 µm SEVIRI infrared channels. A statistical relation is developed to assign a cloud index value to either the BTD or the brightness temperature T10:8, depending on the cloud class to which the pixel belongs (fog and low stratus, clouds with temperatures less than 232 K, other clouds). Images are composed of regular HR-VIS cloud index values that are used to the east of the terminator and of nighttime BTD-derived cloud index values used to the west of the terminator, where the Sun has not yet risen. The motion vector algorithm is applied to the images and delivers a forecast of irradiance at sunrise and in the morning. The forecasted irradiance is validated with ground measurements of global horizontal irradiance, and the advantage of the new approach is shown. The RMSE of forecasted irradiance based on the presented nighttime cloud index for the morning hours is between 3 and 70 W/m2, depending on the time of day. This is an improvement against the previous precision range of the forecast based on the daytime cloud index between 70 and 85 W/m2. View Full-Text
Keywords: solar irradiance; forecasting; cloud index; brightness temperature difference; Meteosat Second Generation; SEVIRI; energy meteorology solar irradiance; forecasting; cloud index; brightness temperature difference; Meteosat Second Generation; SEVIRI; energy meteorology
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hammer, A.; Kühnert, J.; Weinreich, K.; Lorenz, E. Short-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud Index. Remote Sens. 2015, 7, 9070-9090.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top