Next Article in Journal
Correction: Shannon, A.M.; Power, H.E.; Webster, J.M.; Vila-Concejo, A. Evolution of Coral Rubble Deposits on a Reef Platform as Detected by Remote Sensing. Remote Sensing, 2013, 5, 1–18
Previous Article in Journal
Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods
Remote Sens. 2014, 6(4), 2718-2742; doi:10.3390/rs6042718
Article

Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends

1,*  and 2
1 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan 2 National Research Institute of Far Seas Fisheries, 5-7-1 Orido, Shimizu ward, Shizuoka 424-8633, Japan
* Author to whom correspondence should be addressed.
Received: 6 January 2014 / Revised: 3 March 2014 / Accepted: 17 March 2014 / Published: 25 March 2014
View Full-Text   |   Download PDF [11894 KB, uploaded 19 June 2014]   |   Browse Figures
SciFeed

Abstract

Seasonal cycles, interannual variations and decadal trends of Sea-viewing Wide Field-of-view Sensor (SeaWiFS)-retrieved chlorophyll-a concentration (Chl-a) in the Strait of Malacca (SM) were investigated with reconstructed, cloud-free SeaWiFS Chl-a during the period of the SeaWiFS full mission (September 1997 to December 2010). Pixel-based non-parametric correlations of SeaWiFS Chl-a on environmental variables were used to identify the probable causes of the observed spatio-temporal variations of SeaWiFS Chl-a in northern, middle and southern regions of the SM. Chl-a was high (low) during the northeast (southwest) monsoon. The principal causes of the seasonality were wind-driven vertical mixing in the northern region and wind-driven coastal upwelling and possibly river discharges in the middle region. Among the three regions, the southern region showed the largest interannual variations of Chl-a. These variations were associated with the El Niño/Southern Oscillation (ENSO) and river runoff. Interannual variations of Chl-a in the middle and northern regions were more responsive to the Indian Ocean Dipole and ENSO, respectively, with atmospheric deposition being the most important driver. The most significant decadal-scale trend of increasing Chl-a was in the southern region; the trend was moderate in the middle region. This increasing trend was probably caused by environmental changes unrelated to the variables investigated in this study.
Keywords: remote sensing; chlorophyll-a; nutrient fluxes; upwelling; mixing; wind field; atmospheric deposition remote sensing; chlorophyll-a; nutrient fluxes; upwelling; mixing; wind field; atmospheric deposition
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Siswanto, E.; Tanaka, K. Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends. Remote Sens. 2014, 6, 2718-2742.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert