Next Article in Journal
Correction: Shannon, A.M.; Power, H.E.; Webster, J.M.; Vila-Concejo, A. Evolution of Coral Rubble Deposits on a Reef Platform as Detected by Remote Sensing. Remote Sensing, 2013, 5, 1–18
Previous Article in Journal
Estimating Soil Organic Carbon Using VIS/NIR Spectroscopy with SVMR and SPA Methods
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2014, 6(4), 2718-2742; doi:10.3390/rs6042718

Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends

1
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan
2
National Research Institute of Far Seas Fisheries, 5-7-1 Orido, Shimizu ward, Shizuoka 424-8633, Japan
*
Author to whom correspondence should be addressed.
Received: 6 January 2014 / Revised: 3 March 2014 / Accepted: 17 March 2014 / Published: 25 March 2014
View Full-Text   |   Download PDF [11894 KB, uploaded 19 June 2014]   |  

Abstract

Seasonal cycles, interannual variations and decadal trends of Sea-viewing Wide Field-of-view Sensor (SeaWiFS)-retrieved chlorophyll-a concentration (Chl-a) in the Strait of Malacca (SM) were investigated with reconstructed, cloud-free SeaWiFS Chl-a during the period of the SeaWiFS full mission (September 1997 to December 2010). Pixel-based non-parametric correlations of SeaWiFS Chl-a on environmental variables were used to identify the probable causes of the observed spatio-temporal variations of SeaWiFS Chl-a in northern, middle and southern regions of the SM. Chl-a was high (low) during the northeast (southwest) monsoon. The principal causes of the seasonality were wind-driven vertical mixing in the northern region and wind-driven coastal upwelling and possibly river discharges in the middle region. Among the three regions, the southern region showed the largest interannual variations of Chl-a. These variations were associated with the El Niño/Southern Oscillation (ENSO) and river runoff. Interannual variations of Chl-a in the middle and northern regions were more responsive to the Indian Ocean Dipole and ENSO, respectively, with atmospheric deposition being the most important driver. The most significant decadal-scale trend of increasing Chl-a was in the southern region; the trend was moderate in the middle region. This increasing trend was probably caused by environmental changes unrelated to the variables investigated in this study.
Keywords: remote sensing; chlorophyll-a; nutrient fluxes; upwelling; mixing; wind field; atmospheric deposition remote sensing; chlorophyll-a; nutrient fluxes; upwelling; mixing; wind field; atmospheric deposition
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Siswanto, E.; Tanaka, K. Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends. Remote Sens. 2014, 6, 2718-2742.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top