Next Article in Journal
Empirical and Physical Estimation of Canopy Water Content from CHRIS/PROBA Data
Previous Article in Journal
Analysis of the Phenology in the Mongolian Plateau by Inter-Comparison of Global Vegetation Datasets
Remote Sens. 2013, 5(10), 5209-5264; doi:10.3390/rs5105209
Article

Quality Assessment of Pre-Classification Maps Generated from Spaceborne/Airborne Multi-Spectral Images by the Satellite Image Automatic Mapper™ and Atmospheric/Topographic Correction™-Spectral Classification Software Products: Part 2 — Experimental Results

1,* , 1
 and 2
Received: 1 July 2013; in revised form: 17 September 2013 / Accepted: 9 October 2013 / Published: 18 October 2013
View Full-Text   |   Download PDF [4660 KB, uploaded 19 June 2014]   |   Browse Figures
Abstract: This paper complies with the Quality Assurance Framework for Earth Observation (QA4EO) international guidelines to provide a metrological/statistically-based quality assessment of the Spectral Classification of surface reflectance signatures (SPECL) secondary product, implemented within the popular Atmospheric/Topographic Correction (ATCOR™) commercial software suite, and of the Satellite Image Automatic Mapper™ (SIAM™) software product, proposed to the remote sensing (RS) community in recent years. The ATCOR™-SPECL and SIAM™ physical model-based expert systems are considered of potential interest to a wide RS audience: in operating mode, they require neither user-defined parameters nor training data samples to map, in near real-time, a spaceborne/airborne multi-spectral (MS) image into a discrete and finite set of (pre-attentional first-stage) spectral-based semi-concepts (e.g., “vegetation”), whose informative content is always equal or inferior to that of target (attentional second-stage) land cover (LC) concepts (e.g., “deciduous forest”). For the sake of simplicity, this paper is split into two: Part 1—Theory and Part 2—Experimental results. The Part 1 provides the present Part 2 with an interdisciplinary terminology and a theoretical background. To comply with the principle of statistics and the QA4EO guidelines discussed in the Part 1, the present Part 2 applies an original adaptation of a novel probability sampling protocol for thematic map quality assessment to the ATCOR™-SPECL and SIAM™ pre-classification maps, generated from three spaceborne/airborne MS test images. Collected metrological/ statistically-based quality indicators (QIs) comprise: (i) an original Categorical Variable Pair Similarity Index (CVPSI), capable of estimating the degree of match between a test pre-classification map’s legend and a reference LC map’s legend that do not coincide and must be harmonized (reconciled); (ii) pixel-based Thematic (symbolic, semantic) QIs (TQIs) and (iii) polygon-based sub-symbolic (non-semantic) Spatial QIs (SQIs), where all TQIs and SQIs are provided with a degree of uncertainty in measurement. Main experimental conclusions of the present Part 2 are the following. (I) Across the three test images, the CVPSI values of the SIAM™ pre-classification maps at the intermediate and fine semantic granularities are superior to those of the ATCOR™-SPECL single-granule maps. (II) TQIs of both the ATCOR™-SPECL and the SIAM™ tend to exceed community-agreed reference standards of accuracy. (III) Across the three test images and the SIAM™’s three semantic granularities, TQIs of the SIAM™ tend to be significantly higher (in statistical terms) than the ATCOR™-SPECL’s. Stemming from the proposed experimental evidence in support to theoretical considerations, the final conclusion of this paper is that, in compliance with the QA4EO objectives, the SIAM™ software product can be considered eligible for injecting prior spectral knowledge into the pre-attentive vision first stage of a novel generation of hybrid (combined deductive and inductive) RS image understanding systems, capable of transforming large-scale multi-source multi-resolution EO image databases into operational, comprehensive and timely knowledge/information products.
Keywords: attentive vision; confusion matrix; degree of uncertainty in measurement; harmonization (reconciliation) of ontologies; land cover classification; multi-spectral image; overlapping area matrix; pre-attentive vision; preliminary classification; probability sampling; quality indicators of operativeness; categorical and spatial accuracy of thematic maps attentive vision; confusion matrix; degree of uncertainty in measurement; harmonization (reconciliation) of ontologies; land cover classification; multi-spectral image; overlapping area matrix; pre-attentive vision; preliminary classification; probability sampling; quality indicators of operativeness; categorical and spatial accuracy of thematic maps
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Baraldi, A.; Humber, M.; Boschetti, L. Quality Assessment of Pre-Classification Maps Generated from Spaceborne/Airborne Multi-Spectral Images by the Satellite Image Automatic Mapper™ and Atmospheric/Topographic Correction™-Spectral Classification Software Products: Part 2 — Experimental Results. Remote Sens. 2013, 5, 5209-5264.

AMA Style

Baraldi A, Humber M, Boschetti L. Quality Assessment of Pre-Classification Maps Generated from Spaceborne/Airborne Multi-Spectral Images by the Satellite Image Automatic Mapper™ and Atmospheric/Topographic Correction™-Spectral Classification Software Products: Part 2 — Experimental Results. Remote Sensing. 2013; 5(10):5209-5264.

Chicago/Turabian Style

Baraldi, Andrea; Humber, Michael; Boschetti, Luigi. 2013. "Quality Assessment of Pre-Classification Maps Generated from Spaceborne/Airborne Multi-Spectral Images by the Satellite Image Automatic Mapper™ and Atmospheric/Topographic Correction™-Spectral Classification Software Products: Part 2 — Experimental Results." Remote Sens. 5, no. 10: 5209-5264.


Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert