Next Article in Journal
Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America
Previous Article in Journal
An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia
Remote Sens. 2013, 5(1), 110-126; doi:10.3390/rs5010110

Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description

1,* , 1
, 2
, 3
, 1
, 1
, 1
, 1,†
 and 1
Received: 1 November 2012; in revised form: 25 December 2012 / Accepted: 25 December 2012 / Published: 4 January 2013
View Full-Text   |   Download PDF [1201 KB, uploaded 19 June 2014]   |   Browse Figures
Abstract: A new algorithm for snow cover monitoring at 250 m resolution based on Moderate Resolution Imaging Spectroradiometer (MODIS) images is presented. In contrast to the 500 m resolution MODIS snow products of NASA (MOD10 and MYD10), the main goal was to maintain the resolution as high as possible to allow for a more accurate detection of snow covered area (SCA). This is especially important in mountainous regions characterized by extreme landscape heterogeneity, where maps at a resolution of 500 m could not provide the desired amount of spatial details. Therefore, the algorithm exploits only the 250 m resolution bands of MODIS in the red (B1) and infrared (B2) spectrum, as well as the Normalized Difference Vegetation Index (NDVI) for snow detection, while clouds are classified using also bands at 500 m and 1 km resolution. The algorithm is tailored to process MODIS data received in real-time through the EURAC receiving station close to Bolzano, Italy, but also standard MODIS products are supported. It is divided into three steps: first the data is preprocessed, including reprojection, calculation of physical reflectance values and masking of water bodies. In a second step, the actual classification of snow, snow in forested areas, and clouds takes place based on MODIS images both from Terra and Aqua satellites. In the third step, snow cover maps derived from images of both sensors of the same day are combined to reduce cloud coverage in the final SCA product. Four different quality indices are calculated to verify the reliability of input data, snow classification, cloud detection and viewing geometry. Using the data received through their own station, EURAC can provide SCA maps of central Europe to end users in near real-time. Validation of the algorithm is outlined in a companion paper and indicates good performance with accuracies ranging from 94% to around 82% compared to in situ snow depth measurements, and around 93% compared to SCA derived from Landsat ETM+ images.
Keywords: MODIS; snow; snow covered area; topography; NDVI MODIS; snow; snow covered area; topography; NDVI
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |

MDPI and ACS Style

Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description. Remote Sens. 2013, 5, 110-126.

AMA Style

Notarnicola C, Duguay M, Moelg N, Schellenberger T, Tetzlaff A, Monsorno R, Costa A, Steurer C, Zebisch M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description. Remote Sensing. 2013; 5(1):110-126.

Chicago/Turabian Style

Notarnicola, Claudia; Duguay, Martial; Moelg, Nico; Schellenberger, Thomas; Tetzlaff, Anke; Monsorno, Roberto; Costa, Armin; Steurer, Christian; Zebisch, Marc. 2013. "Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description." Remote Sens. 5, no. 1: 110-126.

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert