Next Article in Journal
Bird Pollinator Visitation is Equivalent in Island and Plantation Planting Designs in Tropical Forest Restoration Sites
Next Article in Special Issue
Advances in Sustainability: Contributions and Outcomes of the 2nd World Sustainability Forum
Previous Article in Journal
Microfoundations for Sustainable Growth with Eco-Intelligent Product Service-Arrangements
Sustainability 2013, 5(3), 1161-1176; doi:10.3390/su5031161
Article

Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts

1,* , 2
, 1
, 3
 and 4
Received: 16 January 2013; in revised form: 20 February 2013 / Accepted: 4 March 2013 / Published: 19 March 2013
View Full-Text   |   Download PDF [2125 KB, uploaded 19 March 2013]   |   Browse Figures
Abstract: Nowadays, the electric connection circuits of power plants (based on fossil fuels as well as renewable sources) entail generator circuit-breakers (GCBs) at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. In an alternating current (a.c.) circuit the interruption of a short circuit is performed by the circuit-breaker at the natural passing through zero of the short-circuit current. During the current interruption, an electric arc is generated between the opened contacts of the circuit-breaker. This arc must be cooled and extinguished in a controlled way. Since the synchronous generator stator can flow via highly asymmetrical short-circuit currents, the phenomena which occur in the case of short-circuit currents interruption determine the main stresses of the generator circuit-breaker; the current interruption requirements of a GCB are significantly higher than for the distribution network circuit breakers. For shedding light on the proper moment when the generator circuit-breaker must operate, using the space phasor of the short-circuit currents, the time expression to the first zero passing of the short-circuit current is determined. Here, the manner is investigated in which various factors influence the delay of the zero passing of the short-circuit current. It is shown that the delay time is influenced by the synchronous machine parameters and by the load conditions which precede the short-circuit. Numerical simulations were conducted of the asymmetrical currents in the case of the sudden three-phase short circuit at the terminals of synchronous generators. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. The article points out that just after the short-circuit current interruption by the generator the circuit-breaker (when the GCB has been subjected at the metal contact terminals to the high temperature of a plasma arc, up to 50,000 K) between its opened contacts, there arises the transient recovery voltage (TRV) which constitutes the most important dielectric stress after the electric arc extinction. Since the magnitude and shape of the TRV occurring across the generator circuit-breaker are critical parameters in the recovering gap after the current zero, in this paper, we model, for the case of the faults fed by the main step-up transformer, the equivalent configurations, with operational impedances, for the TRV calculation, taking into account the main transformer parameters, on the basis of the symmetrical components method.
Keywords: electric arc; exergy; generator circuit-breaker; short-circuit; sustainability; transient recovery voltage electric arc; exergy; generator circuit-breaker; short-circuit; sustainability; transient recovery voltage
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Bulucea, C.A.; Rosen, M.A.; Nicola, D.A.; Mastorakis, N.E.; Bulucea, C.A. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts. Sustainability 2013, 5, 1161-1176.

AMA Style

Bulucea CA, Rosen MA, Nicola DA, Mastorakis NE, Bulucea CA. Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts. Sustainability. 2013; 5(3):1161-1176.

Chicago/Turabian Style

Bulucea, Cornelia A.; Rosen, Marc A.; Nicola, Doru A.; Mastorakis, Nikos E.; Bulucea, Carmen A. 2013. "Approaching the Processes in the Generator Circuit Breaker at Disconnection through Sustainability Concepts." Sustainability 5, no. 3: 1161-1176.


Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert