Next Article in Journal
A Naturally Occurring Defective DNA Satellite Associated with a Monopartite Begomovirus: Evidence for Recombination between Alphasatellite and Betasatellite
Previous Article in Journal
Ecology of West Nile Virus in North America
Article Menu

Export Article

Open AccessReview
Viruses 2013, 5(9), 2106-2115; doi:10.3390/v5092106

Varicella Zoster Virus (VZV)-Human Neuron Interaction

Departments of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
Departments of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
Author to whom correspondence should be addressed.
Received: 15 July 2013 / Revised: 27 August 2013 / Accepted: 28 August 2013 / Published: 4 September 2013
View Full-Text   |   Download PDF [656 KB, uploaded 12 May 2015]   |  


Varicella zoster virus (VZV) is a highly neurotropic, exclusively human herpesvirus. Primary infection causes varicella (chickenpox), wherein VZV replicates in multiple organs, particularly the skin. Widespread infection in vivo is confirmed by the ability of VZV to kill tissue culture cells in vitro derived from any organ. After varicella, VZV becomes latent in ganglionic neurons along the entire neuraxis. During latency, virus DNA replication stops, transcription is restricted, and no progeny virions are produced, indicating a unique virus-cell (neuron) relationship. VZV reactivation produces zoster (shingles), often complicated by serious neurological and ocular disorders. The molecular trigger(s) for reactivation, and thus the identity of a potential target to prevent it, remains unknown due to an incomplete understanding of the VZV-neuron interaction. While no in vitro system has yet recapitulated the findings in latently infected ganglia, recent studies show that VZV infection of human neurons in SCID mice and of human stem cells, including induced human pluripotent stem cells and normal human neural progenitor tissue-like assemblies, can be established in the absence of a cytopathic effect. Usefulness of these systems in discovering the mechanisms underlying reactivation awaits analyses of VZV-infected, highly pure (>90%), terminally differentiated human neurons capable of prolonged survival in vitro.
Keywords: varicella zoster virus; neurons; latency varicella zoster virus; neurons; latency
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Baird, N.L.; Yu, X.; Cohrs, R.J.; Gilden, D. Varicella Zoster Virus (VZV)-Human Neuron Interaction. Viruses 2013, 5, 2106-2115.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top