Next Article in Journal
Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation
Previous Article in Journal
Phylogenetic Analysis and Pathogenicity Assessment of the Emerging Recombinant Subgroup K of Avian Leukosis Virus in South China
Previous Article in Special Issue
Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Viruses 2018, 10(4), 195; https://doi.org/10.3390/v10040195

A New Model for the Dynamics of Hepatitis C Infection: Derivation, Analysis and Implications

Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK
Received: 25 January 2018 / Revised: 29 March 2018 / Accepted: 10 April 2018 / Published: 13 April 2018
(This article belongs to the Special Issue Mathematical Modeling of Viral Infections)
View Full-Text   |   Download PDF [765 KB, uploaded 3 May 2018]   |  

Abstract

We review various existing models of hepatitis C virus (HCV) infection and show that there are inconsistencies between the models and known behaviour of the infection. A new model for HCV infection is proposed, based on various dynamical processes that occur during the infection that are described in the literature. This new model is analysed, and three steady state branches of solutions are found when there is no stem cell generation of hepatocytes. Unusually, the branch of infected solutions that connects the uninfected branch and the pure infection branch can be found analytically and always includes a limit point, subject to a few conditions on the parameters. When the action of stem cells is included, the bifurcation between the pure infection and infected branches unfolds, leaving a single branch of infected solutions. It is shown that this model can generate various viral load profiles that have been described in the literature, which is confirmed by fitting the model to four viral load datasets. Suggestions for possible changes in treatment are made based on the model. View Full-Text
Keywords: HCV infection; mathematical model; steady state solutions; bifurcations HCV infection; mathematical model; steady state solutions; bifurcations
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Aston, P.J. A New Model for the Dynamics of Hepatitis C Infection: Derivation, Analysis and Implications. Viruses 2018, 10, 195.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top