Next Article in Journal
Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading
Previous Article in Journal
Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe-N-Doped Titanium Dioxide Nanoparticles
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Materials 2016, 9(9), 792; doi:10.3390/ma9090792

The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties

1
Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
2
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Ingo Dierking
Received: 16 August 2016 / Revised: 8 September 2016 / Accepted: 12 September 2016 / Published: 21 September 2016
(This article belongs to the Section Advanced Composites)
View Full-Text   |   Download PDF [10122 KB, uploaded 21 September 2016]   |  

Abstract

To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. View Full-Text
Keywords: shape memory; liquid crystalline; self-healing shape memory; liquid crystalline; self-healing
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ban, J.; Zhu, L.; Chen, S.; Wang, Y. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties. Materials 2016, 9, 792.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top