Next Article in Journal
Three-Dimensional Network Model for Coupling of Fracture and Mass Transport in Quasi-Brittle Geomaterials
Next Article in Special Issue
A Multi-Level Decision Fusion Strategy for Condition Based Maintenance of Composite Structures
Previous Article in Journal
Multichromic Polymers Containing Alternating Bi(3-Methoxythiophene) and Triphenylamine Based Units with Para-Protective Substituents
Previous Article in Special Issue
Guided Wave Based Crack Detection in the Rivet Hole Using Global Analytical with Local FEM Approach
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Materials 2016, 9(9), 781; doi:10.3390/ma9090781

Monitoring Poisson’s Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors

1
Faculty of Aeronautics and Astronautics, Ayazaga Campus, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
2
Faculty of Engineering and Natural Sciences, SU-Kordsa Composite Technologies Center of Excellence and Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
*
Author to whom correspondence should be addressed.
Academic Editor: Ferri Aliabadi
Received: 20 May 2016 / Revised: 27 August 2016 / Accepted: 3 September 2016 / Published: 19 September 2016
(This article belongs to the Special Issue Advances in Structural Health Monitoring for Aerospace Structures)
View Full-Text   |   Download PDF [3865 KB, uploaded 19 September 2016]   |  

Abstract

The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel method for biaxial strain measurement using embedded FBG sensors during the fatigue testing of FRP composites. Poisson’s ratio and its reduction were monitored for each cyclic loading by using embedded FBG sensors for a given specimen and correlated with the fatigue stages determined based on the variations of the applied fatigue loading and temperature due to the autogenous heating to predict an oncoming failure of the continuous fiber-reinforced epoxy matrix composite specimens under fatigue loading. The results show that FBG sensor technology has a remarkable potential for monitoring the evolution of Poisson’s ratio on a cycle-by-cycle basis, which can reliably be used towards tracking the fatigue stages of composite for structural health monitoring purposes. View Full-Text
Keywords: strain; Poisson’s ratio; FBG; composite; fatigue; lateral strain strain; Poisson’s ratio; FBG; composite; fatigue; lateral strain
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Akay, E.; Yilmaz, C.; Kocaman, E.S.; Turkmen, H.S.; Yildiz, M. Monitoring Poisson’s Ratio Degradation of FRP Composites under Fatigue Loading Using Biaxially Embedded FBG Sensors. Materials 2016, 9, 781.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top