Next Article in Journal
Utilization of an Ionic Liquid/Urea Mixture as a Physical Coupling Agent for Agarose/Talc Composite Films
Next Article in Special Issue
Dynamic Morphological Changes Induced By GM1 and Protein Interactions on the Surface of Cell-Sized Liposomes
Previous Article in Journal
Advanced Strategies for Articular Cartilage Defect Repair
Previous Article in Special Issue
Horizontal Bilayer for Electrical and Optical Recordings
Materials 2013, 6(2), 669-681; doi:10.3390/ma6020669
Article

Supported Membranes Meet Flat Fluidics: Monitoring Dynamic Cell Adhesion on Pump-Free Microfluidics Chips Functionalized with Supported Membranes Displaying Mannose Domains

1,2,†
,
1,3,†
,
1,4
,
5
,
2,*  and 1,3,6,*
1 Department of Physics, Technical University Munich, Garching D85748, Germany 2 Experimental Physics I, University of Augsburg, Augsburg D86159, Germany 3 Physical Chemistry of Biosystems, University of Heidelberg, Heidelberg D69120, Germany 4 NANO group-UMR 7565 SRSMC CNRS, Université de Lorraine, Boulevard des Aiguillettes-F54506 Vandoeuvre-Lès-Nancy, France 5 Beckman Coulter Biomedical GmbH, Advalytix Products, Munich D81377, Germany 6 Cell Biophysics Lab, Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe D76131, Germany These two authors equally contributed to the work.
* Authors to whom correspondence should be addressed.
Received: 18 October 2012 / Revised: 7 January 2013 / Accepted: 5 February 2013 / Published: 22 February 2013
(This article belongs to the Special Issue Supported Lipid Membranes)
Download PDF [1528 KB, uploaded 22 February 2013]

Abstract

In this paper we demonstrate the combination of supported membranes and so-called flat microfluidics, which enables one to manipulate liquids on flat chip surfaces via “inverse piezoelectric effect”. Here, an alternating external electric field applied to the inter-digital transducers excites a surface acoustic wave on a piezoelectric substrate. Employing lithographic patterning of self-assembled monolayers of alkoxysilanes, we successfully confine a free-standing, hemi-cylindrical channel with the volume of merely 7 µL . The experimentally determined maximum flow velocity scales linearly with the acoustic power, suggesting that our current setup can drive liquids at the speed of up to 7 cm/s (corresponding to a shear rate of 280 s−1) without applying high pressures using a fluidic pump. After the establishment of the functionalization of fluidic chip surfaces with supported membranes, we deposited asymmetric supported membranes displaying well-defined mannose domains and monitored the dynamic adhesion of E. Coli HB101 expressing mannose-binding receptors. Despite of the further technical optimization required for the quantitative analysis, the obtained results demonstrate that the combination of supported membranes and flat fluidics opens a large potential to investigate dynamic adhesion of cells on biofunctional membrane surfaces with the minimum amount of samples, without any fluidic pump.
Keywords: supported membrane; surface acoustic wave; flatfluidics; cell adhesion supported membrane; surface acoustic wave; flatfluidics; cell adhesion
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Oelke, J.; Kaindl, T.; Pasc, A.; Guttenberg, Z.; Wixforth, A.; Tanaka, M. Supported Membranes Meet Flat Fluidics: Monitoring Dynamic Cell Adhesion on Pump-Free Microfluidics Chips Functionalized with Supported Membranes Displaying Mannose Domains. Materials 2013, 6, 669-681.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert