Next Article in Journal
Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications
Next Article in Special Issue
Study of Morphological Changes in MgH2 Destabilized LiBH4 Systems Using Computed X-ray Microtomography
Previous Article in Journal
Synthesis, Crystal Structure and Luminescent Property of Mg(II) Complex with N-Benzenesulphonyl-L-Leucine and 1,10-Phenanthroline
Previous Article in Special Issue
Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes
Materials 2012, 5(4), 566-574; doi:10.3390/ma5040566

Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations

1,* , 1
1 Department of Materials, Physics and Energy Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan 2 Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan 3 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
* Author to whom correspondence should be addressed.
Received: 30 January 2012 / Revised: 20 March 2012 / Accepted: 22 March 2012 / Published: 30 March 2012
(This article belongs to the Special Issue Recent Advances in Hydrogen Storage Materials)
Download PDF [521 KB, uploaded 30 March 2012]


In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH3 dehydrogenation toward the cell.
Keywords: AlH3; chemical bonding; EELS; first principles calculation AlH3; chemical bonding; EELS; first principles calculation
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
MDPI and ACS Style

Tatsumi, K.; Muto, S.; Ikeda, K.; Orimo, S.-I. Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations. Materials 2012, 5, 566-574.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


Cited By

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert