Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines
Abstract
:1. Introduction
2. Methods
2.1. Experimental Tractor and Apparatus

| Component | Min. | Max. | Resolution |
|---|---|---|---|
| CO (%)vol | 0 | 10.00 | 0.001 |
| CO2(%)vol | 0 | 18.00 | 0.01 |
| Lambda | 0.5 | 22.00 | 0.001 |
| NO (PPM) | 0 | 5000 | 1 |
2.2. Test Fuels and Procedure
| Fuel property | Petroleum diesel (PD) | MCP-B100 [21] | MCP-B20 |
|---|---|---|---|
| Cetane Number | 49 | 52 | 49.6 |
| Calorific Value (MJ/kg) | 46 | 40.04* | 44.8* |
| Density at 15 °C (kg/L) | 0.83 | 0.867 | 0.8374 |
| Viscosity at 40 °C (cp) | 2.525* | 2.8* | 4.22* |
| Flash point (°C) | 79 | 124 | 88 |
| Carbon residue % (m/m) | - | 0.2 | - |
| Total contamination (mg/kg) | - | 2 | - |
| Oxidation stability, 110 °C hours | - | 12 | - |
| Acid value (mg KOH/g) | <0.1 | 0.3 | 0.14 |
| Iodine value | - | 47 | - |
| Sulfated ash content (%) | - | 0.01 | - |
| Water content (mg/kg) | - | 80 | - |
| Methanol content (%) | - | 0.04 | - |
| Sulfuret content (mg/kg) | 8 | 2 | 6.8 |
| Phosphorus content (mg/kg) | - | 3 | - |
| Linolenic acid methyl ester (%) | - | 2 | - |
| Monoglyceride content (%) | - | 0.2 | - |
| Diglyceride content (%) | - | 0.04 | - |
| Triglyceride content (%) | - | 0.02 | - |
| Free glycerol (%) | - | 0.008 | - |
| Total glycerol (%) | - | 0.02 | - |

3. Results and Discussion
3.1. Statistical Analysis
| Variable | PD | MCP-B20 | ANOVA F | ||
|---|---|---|---|---|---|
| M | SD | M | SD | ||
| Engine Torque (Nm) | 38.205 | 1.246 | 35.37 | 0.65 | 16.246*** |
| PTO Torque (Nm) | 220.25 | 7.182 | 203.9 | 3.747 | 16.294*** |
| Gross input power | 55.347 | 2.34 | 50.3 | 1.949 | 10.951** |
| Engine Power (kW) | 10.395 | 0.337 | 9.627 | 0.178 | 16.206*** |
| PTO Power (kW) | 12.232 | 0.399 | 11.327 | 0.209 | 16.129*** |
| BSFC (kg/kWh) | 451.645 | 31.642 | 453.735 | 25.47 | 0.011 |
| Engine efficiency (%) | 18.825 | 1.374 | 19.162 | 1.08 | 0.149 |
| Noise level (db) | 90.9 | 0.408 | 90.375 | 0.33 | 3.997 |
| Exhaust temperature (°C) | 356 | 4.082 | 350 | 4.32 | 4.075 |
| CO2 (%) | 7.97 | 0.049 | 7.375 | 0.15 | 56.720*** |
| CO (%) | 0.036 | 0.006 | 0.250 | 0.005 | 7.188*** |
| O2 (%) | 9.58 | 0.258 | 10.53 | 0.294 | 23.543*** |
| NO (PPM) | 541.5 | 20.68 | 493.5 | 22.22 | 10.003** |
| Lambda | 1.835 | 0.034 | 2.016 | 0.0325 | 59.114*** |
| Variable | PD | MCP-B20 | ANOVA F | ||
|---|---|---|---|---|---|
| M | SD | M | SD | ||
| Engine Torque (Nm) | 79.1025 | 0.587 | 78.235 | 0.585 | 4.38 |
| PTO Torque (Nm) | 456 | 3.366 | 451 | 3.35 | 4.412 |
| Gross input power (kW) | 50.937 | 3.118 | 50.882 | 2.578 | 0.001 |
| Engine Power (kW) | 12.42 | 0.092 | 12.28 | 0.09 | 4.292 |
| PTO Power (kW) | 14.6 | 0.106 | 14.450 | 0.109 | 4.297 |
| BSFC (kg/kWh) | 347.547 | 23.798 | 359.35 | 17.559 | 0.637 |
| Engine efficiency (%) | 24.454 | 1.589 | 24.184 | 1.158 | 0.076 |
| Noise level (db) | 86.3 | 0.622 | 85.9 | 0.648 | 0.793 |
| Exhaust temperature (°C) | 470 | 5.77 | 480 | 5.788 | 5.985* |
| CO2 (%) | 12.105 | 0.0914 | 12.025 | 0.881 | 1.587 |
| CO (%) | 0.902 | 0.015 | 0.85 | 0.008 | 37.8*** |
| O2 (%) | 2.98 | 0.077 | 3.102 | 0.074 | 5.254 |
| NO (PPM) | 970 | 5.715 | 994 | 3.651 | 50.087*** |
| Lambda | 1.13 | 0.008 | 1.14 | 0.016 | 1.2 |
3.2. Tractor Engine Performance
3.2.1. Tractor Engine Gross Input Power (kW) and Tractor Engine Brake Power (kW)


3.2.2. Tractor Engine Torque (Nm) and Engine Efficiency (%)


3.2.3. Brake Specific Fuel Consumption (BSFC)

3.2.4. Exhaust Temperature (°C) and Tractor Noise Level (db)


3.3. Tractor Engine Emissions
3.3.1. Carbon Monoxide (CO) and Carbon Dioxide (CO2)


3.3.2. Oxygen (O2) and Lambda (λ)


3.3.3. Nitrogen monoxide (NO)

4. Conclusions
Abbreviations
| PD | Petroleum Diesel |
| MCP | Microalgae Chlorella Protothecoides |
| MCP-B20 | Microalgae Chlorella Protothecoides Biodiesel blend of 20% with 80% PD |
| MCP-B100 | Microalgae Chlorella Protothecoides Biodiesel 100% |
| MCP-O | Microalgae Chlorella Protothecoides oil |
| PTO | Power Take Off |
| ANOVA | Analysis Of Variance |
| WOT | Wide Open Throttle |
| HOT | Half Open Throttle |
| db | Decibel |
| FAMEs | Fatty Acid Methyl Esters |
| BSFC | Brake Specific Fuel Consumption |
| GIP | Gross Input Power |
| UTHC | Unburnt Total Hydrocarbon |
| PM | Particulate matte |
References
- Nabi, M.N.; Rahman, M.M.; Akhter, M.S. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 2009, 29, 2265–2270. [Google Scholar] [CrossRef]
- Dorado, M.; Ballesteros, E.; Arnal, J.M.; Gómez, J.; López Giménez, F.J. Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy Fuels 2003, 17, 1560–1565. [Google Scholar] [CrossRef]
- Patil, P.D.; Deng, S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009, 88, 1302–1306. [Google Scholar] [CrossRef]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Knothe, G.; Krahl, J.; van Gerpen, J. The Biodiesel Handbook; AOCS Press: Urbana, IL, USA, 2005. [Google Scholar]
- Wilson, R.J.; Farag, I.H. Parametric study of biodiesel quality and yield using a bench-top processor. Int. J. Oil Gas Coal Technol. 2012, 5, 92–105. [Google Scholar] [CrossRef]
- Allawzi, M.; Kandah, M.I. Parametric study of biodiesel production from used soybean oil. Eur. J. Lipid Sci. Technol. 2008, 110, 760–767. [Google Scholar] [CrossRef]
- Pereira, R.G.; Oliveira, C.D.; Oliveira, J.L.; Oliveira, P.C.P.; Fellows, C.E.; Piamba, O.E. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renew. Energy 2007, 32, 2453–2460. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Dasa, L.M.; Babu, M.K.G.; Arora, P.; Singh, V.P.; Kumar, N.R.; Varyani, T.S. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 2009, 88, 1698–1707. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Widjaja, A.; Chien, C.-C.; Ju, Y.-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 2009, 40, 13–20. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain.Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Wang, G.-C.; Zhou, B.-C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 2008, 99, 4717–4722. [Google Scholar] [CrossRef] [PubMed]
- Haik, Y.; Selim, M.Y.E.; Abdulrehman, T. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 2011, 36, 1827–1835. [Google Scholar] [CrossRef]
- Matthew, K.H. Effects of No.2 diesel, B-20 soy biofuel blend, and B-100 soy biofuel on performance, efficiency, and emissions in a compression ignition tractor. In Proceedings of 2007 ASAE Annual Meeting, Chicago, IL, USA, 11–14 August 2007.
- Neel, C.; Johnson, D.; Wardlow, G. Performance, efficiency, and NOX emissions of a compact diesel tractor fueled with D2, B20, and B100 under steady-state loads. Appl. Eng. Agric. 2008, 24, 717–721. [Google Scholar] [CrossRef]
- Kulkarni, S.; Johnson, D.M.; Davis, J.A.; Kennon, D. Irrigation power unit performance, efficiency, and NOX emissions with petroleum diesel, biodiesel, and biodiesel blends. Appl. Eng. Agric. 2011, 27, 217–222. [Google Scholar] [CrossRef]
- Allwayzy, S.; Yusaf, T.; McCabe, B.; Pittaway, P.; Aravinthan, V. Microalgae as alternative fuel for compression ignition (CI) engines. In Proceedings of Southern Region Engineering Conference, Toowoomba, Australia, 11–12 November 2010.
- Soley Biotechnology Institute. Available online: http://algaeinstitute.com/ (accessed on 29 january 2013).
- Al-lwayzy, S.H.; Yusaf, T.; Jensen, T. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil. IOP Conf. Ser. Mater. Sci. Eng. 2012, 36, 012042:1–012042:10. [Google Scholar] [CrossRef]
- Raheman, H.; Phadatare, A.G. Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenergy 2004, 27, 393–397. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain.Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Yusaf, T.; Yousif, B.; Elawad, M. Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy 2011, 36, 4871–4878. [Google Scholar] [CrossRef]
- Andersson, C. Observations on Electric Hybrid Bus Design; Lund Institute of Technology: Lund, Sweden, 2001. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-lwayzy, S.H.; Yusaf, T. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies 2013, 6, 766-783. https://doi.org/10.3390/en6020766
Al-lwayzy SH, Yusaf T. Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies. 2013; 6(2):766-783. https://doi.org/10.3390/en6020766
Chicago/Turabian StyleAl-lwayzy, Saddam H., and Talal Yusaf. 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines" Energies 6, no. 2: 766-783. https://doi.org/10.3390/en6020766
APA StyleAl-lwayzy, S. H., & Yusaf, T. (2013). Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines. Energies, 6(2), 766-783. https://doi.org/10.3390/en6020766
