Energies 2017, 10(11), 1695; doi:10.3390/en10111695
Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O2/N2, O2/CO2, and O2/H2O Atmospheres
1
Ministry of Industry and Information Technology Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
2
Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
*
Authors to whom correspondence should be addressed.
Received: 25 September 2017 / Revised: 17 October 2017 / Accepted: 18 October 2017 / Published: 25 October 2017
(This article belongs to the Section Energy Sources)
Abstract
Burning fuels in an O2/H2O atmosphere is regarded as the next generation of oxy-fuel combustion for CO2 capture and storage (CCS). By combining oxy-fuel combustion and biomass utilization technology, CO2 emissions could be further reduced. Therefore, this work focuses on investigating the combustion characteristics of single particles from bituminous coal (BC) and pine sawdust (PS) in O2/N2, O2/CO2 and O2/H2O atmospheres at different O2 mole fractions (21%, 30%, and 40%). The experiments were carried out in a drop tube furnace (DTF), and a high-speed camera was used to record the combustion processes of fuel particles. The combustion temperatures were measured by a two-color method. The results reveal that the particles from BC and PS all ignite homogeneously. Replacing N2 by CO2 results in a longer ignition delay time and lower combustion temperatures. After substituting H2O for N2, the ignition delay time is shortened, which is mainly caused by the steam gasification reaction (C + H2O → CO + H2) and steam shift reaction (CO + H2O → CO2 + H2). In addition, the combustion temperatures are first decreased at low O2 mole fractions, and then increased at high O2 mole fractions because the oxidation effect of H2O performs a more important role than its volumetric heat capacity and thermal radiation capacity. At the same condition, particles from PS ignite earlier because of their higher reactivity, but the combustion temperatures are lower than those of BC, which is owing to their lower calorific values. View Full-Text
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Lei, K.; Ye, B.; Cao, J.; Zhang, R.; Liu, D. Combustion Characteristics of Single Particles from Bituminous Coal and Pine Sawdust in O2/N2, O2/CO2, and O2/H2O Atmospheres. Energies 2017, 10, 1695.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Energies
EISSN 1996-1073
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert