Prevalence and Gender-Specific Influencing Factors of Hypertension among Chinese Adults: A Cross-Sectional Survey Study in Nanchang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context of the Study Setting
2.2. Study Design and Sample Size
2.3. Sampling Methods and Recruiting Standards
2.4. Date Collection and Survey Variables
2.5. Statistical Analysis
2.6. Ethical Statement
3. Results
3.1. Characteristics of the Study Population
3.2. Prevalence and Age-Standardized Hypertension Prevalence
3.3. Univariate Analysis for Influencing Factors of Hypertension in Different Gender
3.4. Multivariate Analysis for Influencing Factors of Hypertension in Males and Females
4. Discussion
5. Strength and Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). World Health Statistics Reports on Global Health Goals for 194 Countriesa. Available online: http://cdrwww.who.int/mediacentre/news/releases/2015/world-health-statistics-2015/en (accessed on 25 August 2017).
- Wu, Y.; Huxley, R.; Li, L.; Anna, V.; Xie, G.; Yao, C.; Woodward, M.; Li, X.; Chalmers, J.; Gao, R.; et al. Prevalence, awareness, treatment, and control of hypertension in china: data from the China National Nutrition and Health Survey 2002. Circulation 2008, 118, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bi, Y.; Li, M.; Wang, W.; Wang, T.; Wang, L.; Jiang, Y.; Xu, M.; Lu, J.; Li, J. Prevalence, awareness, treatment, and control of hypertension in China: The China metabolic risk factor study. Circulation 2013, 94, 1058–1064. [Google Scholar]
- Chen, W.W.; Gao, R.L.; Liu, L.S.; Zhu, M.L.; Wang, W.; Wang, Y.J.; Wu, Z.S.; Li, H.J.; Gu, D.F.; Yang, Y.J.; et al. China cardiovascular diseases report 2015: A summary. J. Geriatr. Cardiol. 2017, 14, 1–10. [Google Scholar] [PubMed]
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. Available online: https://books.glgoo.com/books?hl=zh-CN&lr=&id=Ycbr2e2WPdcC&oi=fnd&pg=PR5&dq=Global+health+risks:+mortality+and+burden+of+disease+attributable+to+selected+major+risks%3B++World+Health+Organization:+Geneva,+Switzerland,+2009&ots=agy4TDTdaq&sig=Af-DKMo_3E3hBuv9SmZEi8rwKs4#v=onepage&q=Global%20health%20risks%3A%20mortality%20and%20burden%20of%20disease%20attributable%20to%20selected%20major%20risks%3B%20%20World%20Health%20Organization%3A%20Geneva%2C%20Switzerland%2C%202009&f=false (accessed on 10 December 2017).
- Wei, Q.; Sun, J.; Huang, J.; Zhou, H.Y.; Ding, Y.M.; Tao, Y.C.; He, S.M.; Liu, Y.L.; Niu, J.Q. Prevalence of hypertension and associated risk factors in Dehui City of Jilin Province in China. J. Hum. Hypertens. 2015, 29, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.D.; Jiang, H. Hypertension and Related Cardiovascular Disease Burden in China. Ann. Glob. Health 2016, 82, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Population and Employment Statistic Department. Statistical Bureau of Jiangxi. Statistical Yearbook of 2016. Available online: http://www.jxstj.gov.cn/resource/nj/2016CD/indexch.htm (accessed on 2 August 2017).
- Xu, T.; Liu, J.; Zhu, G.; Han, S. Prevalence of prehypertension and associated risk factors among Chinese adults from a large-scale multi-ethnic population survey. Bmc. Public Health 2016, 16, 775. [Google Scholar] [CrossRef] [PubMed]
- Population and Employment Statistic Department. Statistical Bureau of Nanchang. City Overview. Available online: http://www.nctj.gov.cn/NodePage.aspx?NodeID=20 (accessed on 25 November 2017).
- Population and Employment Statistic Department. Statistical Bureau of Nanchang. District Overview. Available online: http://www.nctj.gov.cn/Content.aspx?ItemID=16022 (accessed on 25 November 2017).
- Sun, Z.Q.; Xu, Y.Y. Medical Statistics, 4th ed.; People’s Medical Publishing House: Beijing, China, 2010; pp. 524–527. ISBN 978-7-117-19109-8/R19110. (In Chinese) [Google Scholar]
- Wu, H.J. The Current Situation of Chronic Disease in Qingyunpu Area of Nanchang City and the Analysis of the Integrated Prevention and Control of Major Chronic Diseases. Master’s Thesis, Nanchang University, Nanchang, China, 29 December 2015. (In Chinese). [Google Scholar]
- National Health and Family Planning Commission of the People’s Republic of China. Basic Schema and Data Standard of Health Record (Trial). Available online: http://www.nhfpc.gov.cn/zwgk/wtwj/201304/a281f9a650d644afa5f76e114074a91c.shtml (accessed on 18 October 2017).
- Zhou, B.F. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases—Report for meta-analysis of prospective studies on optimal cut-off points of body mass index in Chinese adults. Biomed. Environ. Sci. 2002, 15, 245–252. [Google Scholar] [PubMed]
- World Health Organization(WHO). Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11234459 (accessed on 30 September 2017).
- Salthouse, T.A. Mental Exercise and Mental Aging: Evaluating the Validity of the “Use It or Lose It” Hypothesis. Available online: http://faculty.virginia.edu/cogage/publications2/Mental%20Exercise%20and%20Mental%20Aging.pdf (accessed on 7 February 2018).
- Chinese Center for Disease Control and Prevention. National Chronic Non-Communicable Diseases Comprehensive Prevention and Control Demonstration Zone Assessment Manual. 2011. No. 01; Chinese Center for Disease Control and Prevention: Beijing, China, 2011.
- Listed, N. 1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. Blood Press. Suppl. 1999, 21, 9–43. [Google Scholar]
- Salthouse, T.A.; Berish, D.E.; Miles, J.D. The role of cognitive stimulation on the relations between age and cognitive functioning. Psychol. Aging 2002, 17, 548–557. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Population and Employment Statistic Department. National Bureau for Statistics of China. The Sixth National Census Data in China, 2010. Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 18 September 2017).
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion. J. Clin. Sleep Med. Jcsm Off. Publ. Am. Acad. Sleep Med. 2015, 11, 591. [Google Scholar]
- Nilsson, P.M.; Cederholm, J.; Zethelius, B.; Eliasson, B.; Eegolofsson, K.; Gudbjörnsdottir, S.; Ndr, F.T.S. Trends in blood pressure control in patients with type 2 diabetes—Data from the Swedish National Diabetes Register (NDR). Blood Press. 2011, 20, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Geiss, L.S.; Cheng, Y.J.; Imperatore, G.; Saydah, S.H.; James, C.; Gregg, E.W. Long-Term and Recent Progress in Blood Pressure Levels Among U.S. Adults With Diagnosed Diabetes, 1988–2008. Diabetes Care 2011, 34, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Suh, D.C.; Kim, C.M.; Choi, I.S.; Plauschinat, C.A.; Barone, J.A. Trends in blood pressure control and treatment among type 2 diabetes with comorbid hypertension in the United States: 1988–2004. J. Hypertens. 2009, 27, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Mcalister, F.A.; Wilkins, K.; Joffres, M.; Leenen, F.H.H.; Fodor, G.; Gee, M.; Tremblay, M.S.; Walker, R.; Johansen, H.; Campbell, N. Changes in the rates of awareness, treatment and control of hypertension in Canada over the past two decades. Cmaj Can. Med. Assoc. J. 2011, 183, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Colosia, A.D.; Palencia, R.; Khan, S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: A systematic literature review. Diabetes Metab. Syndrome Obesity Targets Ther. 2013, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Neupane, D.; Mclachlan, C.S.; Sharma, R.; Gyawali, B.; Khanal, V.; Mishra, S.R.; Bo, C.; Kallestrup, P. Prevalence of Hypertension in Member Countries of South Asian Association for Regional Cooperation (SAARC): Systematic Review and Meta-Analysis. Medicine (Baltimore) 2014, 93, e74. [Google Scholar] [CrossRef] [PubMed]
- .Martiniuk, A.L.; Lee, C.M.; Lawes, C.M.; Ueshima, H.; Suh, I.; Lam, T.H.; Gu, D.; Feigin, V.; Jamrozik, K.; Ohkubo, T. Hypertension: its prevalence and population-attributable fraction for mortality from cardiovascular disease in the Asia-Pacific region. J. Hypertens. 2007, 25, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Wang, L.M.; Jiang, Y.; Li, X.Y.; Zhang, M.; Hu, N. Prevalence of hypertension among Chinese adults in 2010. Chin. J. Prev. Med. 2012, 46, 409. (In Chinese) [Google Scholar] [CrossRef]
- Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Bao, H.; Cheng, X. Prevalence and Risk Factors of Prehypertension and Hypertension in Southern China. PLOS ONE 2017, 12, e0170238. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Frost, C.D.; Wald, N.J. By how much does dietary salt reduction lower blood pressure? III—Analysis of data from trials of salt reduction. BMJ 1991, 302, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yan, J.; Tang, X.; Xu, X.; Yu, W.; Wu, H. Prevalence, Awareness, Treatment, Control and Risk Factors Associated with Hypertension among Adults in Southern China, 2013. PLOS ONE 2016, 11, e0146181. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ma, Y.; Wang, S.; Su, Y.; Rao, W.; Fu, Y.; Yu, Y.; Kou, C. Prevalence and Correlates of Prehypertension and Hypertension among Adults in Northeastern China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2016, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Abel, N.; Contino, K.; Jain, N.; Grewal, N.; Grand, E.; Hagans, I.; Hunter, K.; Roy, S. Eighth Joint National Committee (JNC-8) Guidelines and the Outpatient Management of Hypertension in the African-American Population. N. Am. J. Med. Sci. 2015, 7, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.J.; Sposito, A.C. Hypertension and dyslipidaemia in obesity and insulin resistance: pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol. Ther. 2008, 117, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Biddinger, S.B.; Hernandezono, A.; Raskmadsen, C.; Haas, J.T.; Alemán, J.O.; Suzuki, R.; Scapa, E.F.; Agarwal, C.; Carey, M.C.; Stephanopoulos, G. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008, 7, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.W.; Wang, J.; Liu, M.M.; Wang, D.; Zhao, Y.; Liu, Y.Q.; Wang, H.; Dong, G.H. Body mass index compared with abdominal obesity indicators in relation to prehypertension and hypertension in adults: The CHPSNE study. Am. J. Hypertens. 2013, 26, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, I.P.; Salgado-Goytia, L.; Muñoz-Valle, J.F.; Salgado-Bernabé, A.B.; Quiroz-Vargas, I.; Parra-Rojas, I. Prehypertension in a Mexican population: influence of age, gender, and body fat. Clin. Exp. Hypertens. 2013, 35, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.Y.; Ju, E.Y.; Choi, S.; Seo, S.; Kim, D.E.; Kim, D.K.; Park, S.W. Prehypertension and obesity in middle-aged Korean men and women: The third Korea national health and nutrition examination survey (KNHANES III) study. J. Public Health 2012, 34, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Montasser, M.E.; Douglas, J.A.; Marie-Hélène, R.G.; Van, H.C.V.; Weir, M.R.; Robert, V.; Afshin, P.; Steinle, N.I.; Soren, S.; Brereton, N.H. Determinants of blood pressure response to low-salt intake in a healthy adult population. J. Clin. Hypertens. 2011, 13, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M.; Chen, W.; Teng, B.; Fang, Y. Occupational Disparities in the Association between Self-Reported Salt-Eating Habit and Hypertension in Older Adults in Xiamen, China. Int. J. Environ. Res. Public Health 2016, 13, 148. [Google Scholar] [CrossRef] [PubMed]
Variables | Categories |
---|---|
Age group | 18–39, 40–59, ≥60 years old |
Location | Urban, Rural |
Marital status | Single, Married or cohabitation, Widowed and divorced or separation |
Educational level | Illiterate or primary school, High school, College |
Occupation | Manual workers, Officials, Venders, Unemployed and other |
Smoking history | Current smokers, Former smokers, Never-smokers |
Alcohol consumption | Regular drinkers, Non-drinkers |
Physical exercise (Thousand step equivalents of task) | No exercise |
Qualified physical exercise (≥6) | |
Not qualified physical exercise (<6) [20] | |
DM | No (FPG < 7.0 mmol/L and 2h-PG < 11.1 mmol/L, a self-reported history of not DM) |
Yes (FPG ≥ 7.0 mmol/L and/or 2h-PG ≥ 11.1 mmol/L, a self-reported history of DM, or the use of diabetic medication) [21] | |
BMI (kg/m2) | Underweight (<18.5), Normal (18.5–24), Overweight (24–28), Obese (≥28) [19,22] |
Abdominal obesity (cm) | No (waist circumference (<90 for male, <85 for female)) |
Yes (waist circumference (≥90 for male, ≥85 for female)) [16] | |
Amount of sleep time per night (hour) | <7, ≥7 [23] |
Characteristics | Total (n = 2516) a,b | Male (n = 1238) a,b | Female (n = 1278) a,b | p |
---|---|---|---|---|
Age (years) c | 56 (41–67) | 53 (40–67) | 59 (45–68) | p < 0.001 |
Age group | ||||
18–39 | 518 (20.6) | 305 (24.7) | 213 (16.7) | p < 0.001 |
40–59 | 865 (34.4) | 430 (34.7) | 435 (34.0) | |
≥60 | 1133 (45.0) | 503 (40.6) | 630 (49.3) | |
Location | ||||
Urban | 1272 (50.6) | 620 (50.1) | 652 (51.0) | NS (0.64) |
Rural | 1244 (49.4) | 618 (49.9) | 626 (49.0) | |
Marital status | ||||
Married or cohabit | 2157 (85.7) | 1103 (89.1) | 1054 (82.5) | p < 0.001 |
Unmarried | 146 (5.8) | 94 (7.6) | 52 (4.1) | |
Widowed, divorced, or separated | 213 (8.5) | 41 (3.3) | 172 (13.4) | |
Educational level | ||||
Illiterate or primary school | 1568 (62.3) | 696 (56.2) | 872 (68.2) | p < 0.001 |
High school | 612 (24.3) | 335 (27.1) | 277 (21.7) | |
University | 336 (13.4) | 207 (16.7) | 129 (10.1) | |
Occupation | ||||
Manual workers | 245 (9.7) | 191 (15.4) | 54 (4.2) | p < 0.001 |
Officials | 290 (11.5) | 176 (14.2) | 114 (8.9) | |
Venders | 268 (10.7) | 156 (12.6) | 112 (8.8) | |
Unemployed and other | 1713 (68.1) | 715 (57.8) | 998 (78.1) | |
Smoking history | ||||
Current | 647 (25.7) | 595 (48.1) | 52 (4.1) | p < 0.001 |
Past | 100 (4.0) | 90 (7.3) | 10 (0.8) | |
Never | 1769 (70.3) | 553 (44.6) | 1216 (95.1) | |
Alcohol consumption | ||||
No | 1986 (78.9) | 813 (65.7) | 1173 (91.8) | p < 0.001 |
Yes | 530 (21.1) | 425 (34.3) | 105 (8.2) | |
Physical exercise | ||||
No | 452 (18.0) | 286 (23.1) | 166 (14.0) | p < 0.001 |
Qualified | 1139 (45.3) | 478 (38.6) | 661 (51.7) | |
Not qualified | 925 (36.7) | 474 (38.3) | 451 (35.3) | |
DM | ||||
No | 2297 (91.3) | 1152 (93.1) | 1145 (89.6) | p < 0.005 |
Yes | 219 (8.7) | 86 (6.9) | 133 (10.4) | |
BMI | ||||
Normal | 1579 (62.8) | 766 (61.9) | 813 (63.6) | p < 0.01 |
Thin | 145 (5.8) | 62 (5.0) | 83 (6.5) | |
Overweight | 642 (25.5) | 348 (28.1) | 294 (23.0) | |
Obesity | 150 (5.9) | 62 (5.0) | 88 (6.9) | |
Abdominal obesity | ||||
Yes | 2014 (80.1) | 943 (76.2) | 1071 (83.8) | p < 0.001 |
No | 502 (19.9) | 295 (23.8) | 251 (16.2) | |
Family history of CVD | ||||
Yes | 2152 (85.5) | 186 (15.0) | 178 (14.0) | NS (0.44) |
No | 364 (14.5) | 1052 (85.0) | 1100 (86.0) | |
Amount of sleeping (hour/night) | ||||
<7 | 599 (23.8) | 256 (20.7) | 343 (26.8) | p < 0.001 |
≥7 | 1917 (76.2) | 982 (79.3) | 935 (73.2) | |
Salt intake (g/day) c | 5.07 (3.93–7.38) | 4.92 (3.93–7.27) | 5.07 (3.93–7.38) | NS (0.96) |
Fresh vegetables (50 g/day) c | 5 (5–8) | 5 (5–8) | 5 (5–9) | p < 0.05 |
Fresh fruits (50 g/day) c | 3 (2–5) | 3 (2–5) | 3 (2–5) | p < 0.005 |
Age Group | Total (n = 2516) | Male a (n = 1238) | Female a (n = 1278) | |||
---|---|---|---|---|---|---|
N b | Prevalence (95% CI) | N b | Prevalence (95% CI) | N b | Prevalence (95% CI) | |
18–39 c | 20 | 3.9 (2.2–5.5) | 13 | 4.3 (2.5–6.0) | 7 | 3.3 (1.8–4.8) |
40–59 c | 163 | 18.8 (16.2–21.5) | 76 | 17.7 (15.1–20.2) | 87 | 20.0 (17.3–22.7) |
≥60 c | 539 | 47.6 (44.7–50.5) | 248 | 49.3 (46.4–52.2) | 291 | 46.2 (43.3–49.1) |
Sum c | 722 | 28.7 (26.9–30.5) | 337 | 27.2 (25.5–29.0) | 385 | 30.1 (28.3–31.9) |
Standardized prevalence | 19.8 (18.2–21.3) | 19.5 (18.0–21.1) | 20.0 (18.5–21.6) |
Characteristics | Male (n = 1238) | Female (n = 1278) | ||||
---|---|---|---|---|---|---|
N of Participants (%) (n = 1238) | N of Hypertension (%) (n = 337) | Crude OR (95% CI) | N of Participants (%) (n = 1278) | N of Hypertension (%) (n = 385) | Crude OR (95% CI) | |
Age Group | ||||||
18–39 | 305 (24.6) | 13 (4.3) | 1 | 213 (16.7) | 7 (3.3) | 1 |
40–59 | 430 (34.7) | 76 (17.7) | 4.822 (2.62–8.86) b | 435 (34.0) | 87 (20.0) | 7.357(3.34–16.20) b |
≥60 | 503 (40.7) | 248 (49.3) | 21.845 (12.20–39.11) b | 630 (49.3) | 291 (46.2) | 25.262(11.70–54.53) b |
Smoking history | ||||||
Never | 553 (44.7) | 148 (23.5) | 1 | 1216 (95.1) | 362 (30.8) | 1 |
Current | 595 (48.0) | 140 (54.4) | 0.842 (0.645–1.100) | 52 (4.1) | 16 (70.0) | 1.048 (0.575–1.914) |
Ever | 90 (7.3) | 49 (26.8) | 3.27 (2.074–5.158) b | 10 (0.8) | 7 (29.8) | 5.505 (1.416–21.406) b |
Alcohol consumption | ||||||
No | 813 (65.7) | 227 (27.9) | 1 | 1173 (91.8) | 355 (30.3) | 1 |
Yes | 425 (34.3) | 110 (25.9) | 0.901 (0.691–1.176) | 105 (8.2) | 30 (28.6) | 0.922 (0.593–1.433) |
Physical exercise | ||||||
No | 286 (23.1) | 45 (15.7) | 1 | 166 (13.0) | 42 (25.3) | 1 |
Qualified | 478 (38.6) | 171 (35.8) | 2.983 (2.062–4.315) b | 661 (51.7) | 213 (32.2) | 1.404 (0.954–2.065) |
Not qualified | 474 (38.3) | 121 (25.5) | 1.836 (1.256–2.683) b | 451 (35.3) | 130 (28.8) | 1.196 (0.798–1.793) |
DM | ||||||
No | 1152 (93.0) | 256 (22.2) | 1 | 1145 (89.6) | 265 (23.1) | 1 |
Yes | 86 (7.0) | 81 (94.2) | 56.7 (22.737–141.396) b | 133 (10.4) | 120 (90.2) | 30.653 (17.017–55.217) b |
BMI | ||||||
Normal | 784 (63.3) | 173 (22.1) | 1 | 842 (65.9) | 210 (24.9) | 1 |
Thin | 44 (3.6) | 10 (22.7) | 1.039 (0.503–2.145) | 54 (4.2) | 19 (35.2) | 1.634 (0.915–2.918) |
Overweight | 348 (28.1) | 125 (35.9) | 1.980 (1.501–2.610) b | 294 (23.0) | 114 (38.8) | 1.906 (1.438–2.526) b |
Obesity | 62 (5.0) | 29 (46.8) | 3.104 (1.833–5.255) b | 88 (6.9) | 42 (47.7) | 2.748 (1.758–4.294) b |
Abdominal obesity | ||||||
No | 943 (76.2) | 212 (22.5) | 1 | 1071 (83.8) | 281 (26.2) | 1 |
Yes | 295 (23.8) | 125 (42.4) | 2.535 (1.922–3.344) b | 207 (16.2) | 104 (50.2) | 2.839 (2.093–3.849) b |
Family history of CVD | ||||||
No | 1052 (85.0) | 264 (25.1) | 1 | 1100 (86.1) | 317 (28.8) | 1 |
Yes | 186 (15.0) | 73 (39.3) | 1.928 (1.392–2.670) b | 178 (13.9) | 68 (38.2) | 1.527 (1.099–2.122) b |
Amount of sleep (hour/night) | ||||||
<7 | 256 (20.7) | 95 (37.1) | 1 | 343 (26.8) | 144 (42.0) | 1 |
≥7 | 982 (79.3) | 242 (24.6) | 0.554 (0.414–0.742) b | 935 (73.2) | 241 (25.8) | 0.480 (0.370–0.622) b |
Salt intake (g/day) c | 1238 (100) | 337 (27.22) | 1.028 (0.992–1.066) | 1278 (100) | 385 (3013) | 1.023 (0.990–1.057) |
Fresh vegetables (50 g/day) c | 1238 (100) | 337 (27.22) | 1.105 (1.050–1.163) b | 1278 (100) | 385 (3013) | 1.099 (1.051–1.150) b |
Fresh fruits (50 g/day) c | 1238 (100) | 337 (27.22) | 0.911 (0.861–0.963) b | 1278 (100) | 385 (3013) | 0.877 (0.831–0.926) b |
Characteristics | Male (n = 1238) | Female (n = 1278) | ||
---|---|---|---|---|
Model 1 b | Model 2 c | Model 1 b | Model 2 c | |
Adjusted OR (95% CI) | Adjusted OR (95% CI) | Adjusted OR (95% CI) | Adjusted OR (95% CI) | |
Age Group | ||||
18–39 | 1 | 1 | 1 | 1 |
40–59 | 4.102 (2.119–7.940) d | 4.717 (2.213–10.054) d | 5.599 (2.421–12.950) d | 5.69 (2.197–14.740) d |
≥60 | 17.319 (9.060–33.107) d | 20.591 (9.069–46.753) d | 15.357 (6.743–34.975) d | 13.391 (5.072–35.353) d |
Smoking history | ||||
Never | 1 | 1 | 1 | 1 |
Current | 1.05 (0.743–1.485) | 1.033 (0.728–1.467) | 0.928 (0.455–1.891) | 0.969 (0.473–1.988) |
Ever | 1.887 (1.077–3.306) d | 1.921 (1.090–3.384) d | 14.78 (2.307–94.699) d | 11.425 (1.873–69.682) d |
Alcohol consumption | ||||
No | 1 | 1 | 1 | 1 |
Yes | 0.904 (0.644–1.270) | 0.891 (0.632–1.256) | 0.734 (0.429–1.256) | 0.752(0.438–1.293) |
Physical exercise | ||||
No | 1 | 1 | 1 | 1 |
Qualified | 1.546 (0.967–2.471) | 1.53 (0.950–2.466) | 0.883 (0.551–1.413) | 0.861 (0.535–1.387) |
Not qualified | 1.25 (0.784–1.994) | 1.258 (0.779–2.031) | 0.937 (0.574–1.527) | 0.933 (0.571–1.527) |
DM | ||||
No | 1 | 1 | 1 | 1 |
Yes | 41.235 (15.706–108.258) d | 41.192 (15.720–107.936) d | 21.027 (11.388–38.823) d | 20.202 (10.896–37.456) d |
BMI | ||||
Normal | 1 | 1 | 1 | 1 |
Thin | 0.909 (0.392–2.105) | 0.894 (0.386–2.072) | 1.33 (0.656–2.695) | 1.346 (0.660–2.748) |
Overweight | 1.917 (1.327–2.770) d | 1.89 (1.304–2.739) d | 1.666 (1.182–2.349) d | 1.641 (1.161–2.320) d |
Obesity | 3.362 (1.630–6.934) d | 3.292 (1.575–6.881) d | 2.159 (1.207–3.862) d | 2.136 (1.189–3.839) d |
Abdominal obesity | ||||
No | 1 | 1 | 1 | 1 |
Yes | 1.763 (1.189–2.614) d | 1.827 (1.221–2.734) d | 1.346 (0.895–2.025) | 1.332 (0.881–2.014) |
Family history of CVD | ||||
No | 1 | 1 | 1 | 1 |
Yes | 1.592 (1.027–2.469) d | 1.579 (1.014–2.458) d | 1.263 (0.831–1.919) | 1.252 (0.821–1.911) d |
Amount of sleeping (hour/night) | ||||
<7 | 1 | |||
≥7 | 0.706 (0.492–1.014) | 0.723 (0.501–1.042) | 0.699(0.511–0.956) d | 0.702 (0.510–0.965) d |
Salt intake (g/day) e | 0.975 (0.931–1.021) | 0.972 (0.927–1.019) | 1.002(0.963–1.043) | 1.004 (0.964–1.046) |
Fresh vegetables (50 g/day) e | 1.016 (0.952–1.084) | 1.016 (0.951–1.084) | 1.057(1.002–1.114) d | 1.055 (1.000–1.113) d |
Fresh fruits (50 g/day) e | 0.948 (0.883–1.018) | 0.947 (0.882–1.016) | 0.93(0.872–0.993) d | 0.935(0.875–0.998) d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, K.; Zhou, X.; Ruan, S.; Gan, S.; Cheng, S.; Lu, Y. Prevalence and Gender-Specific Influencing Factors of Hypertension among Chinese Adults: A Cross-Sectional Survey Study in Nanchang, China. Int. J. Environ. Res. Public Health 2018, 15, 382. https://doi.org/10.3390/ijerph15020382
Zhou H, Wang K, Zhou X, Ruan S, Gan S, Cheng S, Lu Y. Prevalence and Gender-Specific Influencing Factors of Hypertension among Chinese Adults: A Cross-Sectional Survey Study in Nanchang, China. International Journal of Environmental Research and Public Health. 2018; 15(2):382. https://doi.org/10.3390/ijerph15020382
Chicago/Turabian StyleZhou, Hui, Kai Wang, Xiaojun Zhou, Shiying Ruan, Shaohui Gan, Siyuan Cheng, and Yuanan Lu. 2018. "Prevalence and Gender-Specific Influencing Factors of Hypertension among Chinese Adults: A Cross-Sectional Survey Study in Nanchang, China" International Journal of Environmental Research and Public Health 15, no. 2: 382. https://doi.org/10.3390/ijerph15020382
APA StyleZhou, H., Wang, K., Zhou, X., Ruan, S., Gan, S., Cheng, S., & Lu, Y. (2018). Prevalence and Gender-Specific Influencing Factors of Hypertension among Chinese Adults: A Cross-Sectional Survey Study in Nanchang, China. International Journal of Environmental Research and Public Health, 15(2), 382. https://doi.org/10.3390/ijerph15020382