Next Article in Journal
The Effect of Bisphenol A on Puberty: A Critical Review of the Medical Literature
Next Article in Special Issue
Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite
Previous Article in Journal
The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies
Previous Article in Special Issue
Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2017, 14(9), 1042; https://doi.org/10.3390/ijerph14091042

Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China

1
Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou 310029, China
2
Institute of Land Science and Property, School of Public Affairs, Zhejiang University, Hangzhou 310058, China
*
Author to whom correspondence should be addressed.
Received: 26 July 2017 / Revised: 5 September 2017 / Accepted: 6 September 2017 / Published: 10 September 2017
(This article belongs to the Special Issue Soil Pollution and Public Health)
View Full-Text   |   Download PDF [3872 KB, uploaded 10 September 2017]   |  

Abstract

Heavy metal (HM) contamination and accumulation is a serious problem around the world due to the toxicity, abundant sources, non-biodegradable properties, and accumulative behaviour of HMs. The degree of soil HM contamination in China, especially in the Yangtze River Delta, is prominent. In this study, 1822 pairs of soil and crop samples at corresponding locations were collected from the southern Yangtze River Delta of China, and the contents of Ni, Cr, Zn, Cd, As, Cu, Hg, and Pb were measured. The single pollution index in soil (SPI) and Nemerow composite pollution index (NCPI) were used to assess the degree of HM pollution in soil, and the crop pollution index (CPI) was used to explore the degree of HM accumulation in crops. The bioaccumulation factor (BAF) was used to investigate the translocation of heavy metals in the soil-crop system. The health risks caused by HMs were calculated based on the model released by the U.S. Environmental Protection Agency. The SPIs of all elements were at the unpolluted level. The mean NCPI was at the alert level. The mean CPIs were in the following decreasing order: Ni (1.007) > Cr (0.483) > Zn (0.335) > Cd (0.314) > As (0.232) > Cu (0.187) > Hg (0.118) > Pb (0.105). Only the mean content of Ni in the crops exceeded the national standard value. The standard exceeding rates were used to represent the percentage of samples whose heavy metal content is higher than the corresponding national standard values. The standard exceeding rates of Cu, Hg, and Cd in soil were significantly higher than corresponding values in crops. Meanwhile, the standard exceeding rates of Ni, As, and Cr in crops were significantly higher than corresponding values in soil. The chronic daily intake (CDI) of children (13.8 × 10−3) was the largest among three age groups, followed by adults (6.998 × 10−4) and seniors (5.488 × 10−4). The bioaccumulation factors (BAFs) of all crops followed the order Cd (0.249) > Zn (0.133) > As (0.076) > Cu (0.064) > Ni (0.018) > Hg (0.011) > Cr (0.010) > Pb (0.001). Therefore, Cd was most easily absorbed by crops, and different crops had different capacities to absorb HMs. The hazard quotient (HQ) represents the potential non-carcinogenic risk for an individual HM and it is an estimation of daily exposure to the human population that is not likely to represent an appreciable risk of deleterious effects during a lifetime. All the HQs of the HMs for the different age groups were significantly less than the alert value of 1.0 and were at a safe level. This indicated that citizens in the study area face low potential non-carcinogenic risk caused by HMs. The total carcinogens risks (TCRs) for children, adults, and seniors were 5.24 × 10−5, 2.65 × 10−5, and 2.08 × 10−5, respectively, all of which were less than the guideline value but at the alert level. Ingestion was the main pathway of carcinogen risk to human health. View Full-Text
Keywords: heavy metals; soil-plant-human systems; health risk assessment; hazard quotients; carcinogens risk; bioaccumulation factors heavy metals; soil-plant-human systems; health risk assessment; hazard quotients; carcinogens risk; bioaccumulation factors
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top