Next Article in Journal
Thiopeptide Antibiotics: Retrospective and Recent Advances
Next Article in Special Issue
Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge
Previous Article in Journal
The Marine Fungal Metabolite, AD0157, Inhibits Angiogenesis by Targeting the Akt Signaling Pathway
Previous Article in Special Issue
Eight New Peptaibols from Sponge-Associated Trichoderma atroviride
Article Menu

Export Article

Open AccessArticle
Mar. Drugs 2014, 12(1), 300-316; doi:10.3390/md12010300

Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering

1
Marine Bioprocess Research Center, Department of Chemistry, Pukyong National University, Busan 608-737, Korea
2
Nanotheranostics Laboratory, Centre for Cellular and Molecular Biology, Hyderabad 500-007, India
*
Author to whom correspondence should be addressed.
Received: 30 October 2013 / Revised: 30 December 2013 / Accepted: 30 December 2013 / Published: 16 January 2014
(This article belongs to the Special Issue Advances and New Perspectives in Marine Biotechnology)
View Full-Text   |   Download PDF [1469 KB, uploaded 24 February 2015]   |  

Abstract

Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration. View Full-Text
Keywords: chitosan; alginate; fucoidan; bone tissue engineering; biomaterials chitosan; alginate; fucoidan; bone tissue engineering; biomaterials
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Venkatesan, J.; Bhatnagar, I.; Kim, S.-K. Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering. Mar. Drugs 2014, 12, 300-316.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top