Next Article in Journal
Dependence of Impedance of Embedded Single Cells on Cellular Behaviour
Next Article in Special Issue
Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm
Previous Article in Journal
Imaging In Mice With Fluorescent Proteins: From Macro To Subcellular
Sensors 2008, 8(2), 1174-1197; doi:10.3390/s80201174
Article

Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

1,* , 1
, 1
, 1
, 1
, 1
, 2
, 3
, 4
 and 5
Received: 11 January 2008; Accepted: 19 February 2008 / Published: 21 February 2008
(This article belongs to the Special Issue Synthetic Aperture Radar (SAR))
View Full-Text   |   Download PDF [1333 KB, uploaded 21 June 2014]   |   Browse Figures
Abstract: The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R2) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.
Keywords: Soil moisture; SAR; backscatter; scaling; temporal stability Soil moisture; SAR; backscatter; scaling; temporal stability
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Wagner, W.; Pathe, C.; Doubkova, M.; Sabel, D.; Bartsch, A.; Hasenauer, S.; Blöschl, G.; Scipal, K.; Martínez-Fernández, J.; Löw, A. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors 2008, 8, 1174-1197.

AMA Style

Wagner W, Pathe C, Doubkova M, Sabel D, Bartsch A, Hasenauer S, Blöschl G, Scipal K, Martínez-Fernández J, Löw A. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors. 2008; 8(2):1174-1197.

Chicago/Turabian Style

Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander. 2008. "Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)." Sensors 8, no. 2: 1174-1197.


Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert