Sensors 2007, 7(8), 1578-1611; doi:10.3390/s7081578

Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications

1,* email, 1email and 2,* email
Received: 8 August 2007; Accepted: 21 August 2007 / Published: 27 August 2007
(This article belongs to the Special Issue Physiological Sensing)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Changes in the chemical environment can trigger large motions in chemomechanical polymers. The unique feature of such intelligent materials, mostly in the form of hydrogels, is therefore, that they serve as sensors and actuators at the same time, and do not require any measuring devices, transducers or power supplies. Until recently the most often used of these materials responded to changes in pH. Chemists are now increasingly using supramolecular recognition sites in materials, which are covalently bound to the polymer backbone. This allows one to use a nearly unlimited variety of guest (or effector) compounds in the environment for a selective response by automatically triggered size changes. This is illustrated with non-covalent interactions of effectors comprising of metal ions, isomeric organic compounds, including enantiomers, nucleotides, aminoacids, and peptides. Two different effector molecules can induce motions as functions of their concentration, thus representing a logical AND gate. This concept is particularly fruitful with effector compounds such as peptides, which only trigger size changes if, e.g. copper ions are present in the surroundings. Another principle relies on the fast formation of covalent bonds between an effector and the chemomechanical polymer. The most promising application is the selective interaction of covalently fixed boronic acid residues with glucose, which renders itself not only for sensing, but eventually also for delivery of drugs such as insulin. The speed of the responses can significantly increase by increasing the surface to volume ratio of the polymer particles. Of particular interest is the sensitivity increase which can be reached by downsizing the particle volume.
Keywords: chemomechanical polymers; hydrogels; molecular recognition; supramolecular complexes ; artificial muscles; glucose sensors
PDF Full-text Download PDF Full-Text [987 KB, uploaded 21 June 2014 00:54 CEST]

Export to BibTeX |

MDPI and ACS Style

Schneider, H.-J.; Kato, K.; Strongin, R.M. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications. Sensors 2007, 7, 1578-1611.

AMA Style

Schneider H-J, Kato K, Strongin RM. Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications. Sensors. 2007; 7(8):1578-1611.

Chicago/Turabian Style

Schneider, Hans-Jörg; Kato, Kazuaki; Strongin, Robert M. 2007. "Chemomechanical Polymers as Sensors and Actuators for Biological and Medicinal Applications." Sensors 7, no. 8: 1578-1611.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert