Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Sensors, Volume 2, Issue 2 (February 2002), Pages 41-70

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Studies on the Electrochemical Behaviour of Hydroquinone at L-cysteine Self-Assembled Monolayers Modified Gold Electrode
Sensors 2002, 2(2), 41-49; doi:10.3390/s20200041
Received: 7 January 2002 / Accepted: 21 January 2002 / Published: 4 February 2002
Cited by 26 | PDF Full-text (416 KB)
Abstract
L-Cysteine is combined onto gold electrode to form a self-assembled monolayers modified electrode (L-Cys/Au SAMs) by taking advantage of strong sulfur-gold interaction. ATR-FTIR, SEM, cyclic voltammetry (CV) and impedance were used for the characterization of the film. It shows excellent stability upon voltametric
[...] Read more.
L-Cysteine is combined onto gold electrode to form a self-assembled monolayers modified electrode (L-Cys/Au SAMs) by taking advantage of strong sulfur-gold interaction. ATR-FTIR, SEM, cyclic voltammetry (CV) and impedance were used for the characterization of the film. It shows excellent stability upon voltametric scanning and a good voltametric response towards hydroquinone with the potential ranged from 0.8 to –0.2 V (vs.SCE) in 0.5M HAc-NaAc buffer solution (pH 4.8). The oxidation potential of hydroquinone on the modified electrode shifted negatively about 330 mV as compared with the bare gold electrode. The plot of catalytic current vs.its concentration has a good linear relation in the range of 2.0×10-6~2.0×10-4M with the correlation coefficient of 0.9986 and the detection limit of 4.0×10-7M by different pulse voltammetry (DPV). Mechanism for the electrocatalytical process has been studied. Full article
Open AccessArticle A Ceramic Thick Film Humidity Sensor Based on MnZn Ferrite
Sensors 2002, 2(2), 50-61; doi:10.3390/s20200050
Received: 6 February 2002 / Accepted: 8 February 2002 / Published: 22 February 2002
Cited by 36 | PDF Full-text (322 KB)
Abstract
A ceramic thick film humidity sensor, produced from MnZn ferrite, is presented. The proposed sensing mechanism is a combination of proton hopping, hydronium diffusion, and vacancy donor traps releasing electrons into the conduction band. The sensor structure comprises a two-layer device; the first
[...] Read more.
A ceramic thick film humidity sensor, produced from MnZn ferrite, is presented. The proposed sensing mechanism is a combination of proton hopping, hydronium diffusion, and vacancy donor traps releasing electrons into the conduction band. The sensor structure comprises a two-layer device; the first layer is an interdigitated conductor and the second layer is a 30μm thick sensing layer. The effects of sintering the sensing pastes in air and vacuum have been reported. The air-fired sample exhibits the highest humidity sensitivity (1.54%/RH%) and the lowest temperature sensitivity (0.37%/oC). The vacuum-fired sample has the lowest humidity sensitivity (0.043%/RH) and the highest temperature sensitivity (0.77%/oC). The sensitivity results indicate that the air-fired sample has the best potential for use in humidity sensing applications. Full article
Open AccessArticle Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance
Sensors 2002, 2(2), 62-70; doi:10.3390/s20200062
Received: 9 January 2001 / Accepted: 15 February 2002 / Published: 23 February 2002
Cited by 75 | PDF Full-text (138 KB) | HTML Full-text | XML Full-text
Abstract
Two metals are used in resonant layers for chemical sensors based on surface plasmon resonance (SPR) - gold and silver. Gold displays higher shift of the resonance angle to changes of ambient refraction index and is chemically stable. Silver posses narrower resonance curve
[...] Read more.
Two metals are used in resonant layers for chemical sensors based on surface plasmon resonance (SPR) - gold and silver. Gold displays higher shift of the resonance angle to changes of ambient refraction index and is chemically stable. Silver posses narrower resonance curve thus providing a higher signal/noise ratio of SPR chemical sensors, but has a poor chemical stability. A new structure of resonant metallic film based on bimetallic silver/gold layers (gold as an outer layer) is suggested. It combines advantages of both gold and silver resonant layers. Bimetallic resonant films display so high shift of resonance angle on changes of ambient refraction index as gold films, but show narrower resonance curve, thus providing a higher signal / noise ratio. Additionally, the outer gold layer protects silver against oxidation. Full article

Journal Contact

MDPI AG
Sensors Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
sensors@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Sensors
Back to Top