Next Article in Journal
Comparison of CBERS-04, GF-1, and GF-2 Satellite Panchromatic Images for Mapping Quasi-Circular Vegetation Patches in the Yellow River Delta, China
Next Article in Special Issue
New Method of Microimages Generation for 3D Display
Previous Article in Journal
Distributed Egocentric Betweenness Measure as a Vehicle Selection Mechanism in VANETs: A Performance Evaluation Study
Previous Article in Special Issue
A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Sensors 2018, 18(8), 2730; https://doi.org/10.3390/s18082730

Robust Fusion of LiDAR and Wide-Angle Camera Data for Autonomous Mobile Robots

Institute for Digital Technologies, Loughborough University, London E15 2GZ, UK
*
Author to whom correspondence should be addressed.
Received: 9 May 2018 / Revised: 6 August 2018 / Accepted: 15 August 2018 / Published: 20 August 2018
(This article belongs to the Special Issue Depth Sensors and 3D Vision)
Full-Text   |   PDF [7360 KB, uploaded 20 August 2018]   |  

Abstract

Autonomous robots that assist humans in day to day living tasks are becoming increasingly popular. Autonomous mobile robots operate by sensing and perceiving their surrounding environment to make accurate driving decisions. A combination of several different sensors such as LiDAR, radar, ultrasound sensors and cameras are utilized to sense the surrounding environment of autonomous vehicles. These heterogeneous sensors simultaneously capture various physical attributes of the environment. Such multimodality and redundancy of sensing need to be positively utilized for reliable and consistent perception of the environment through sensor data fusion. However, these multimodal sensor data streams are different from each other in many ways, such as temporal and spatial resolution, data format, and geometric alignment. For the subsequent perception algorithms to utilize the diversity offered by multimodal sensing, the data streams need to be spatially, geometrically and temporally aligned with each other. In this paper, we address the problem of fusing the outputs of a Light Detection and Ranging (LiDAR) scanner and a wide-angle monocular image sensor for free space detection. The outputs of LiDAR scanner and the image sensor are of different spatial resolutions and need to be aligned with each other. A geometrical model is used to spatially align the two sensor outputs, followed by a Gaussian Process (GP) regression-based resolution matching algorithm to interpolate the missing data with quantifiable uncertainty. The results indicate that the proposed sensor data fusion framework significantly aids the subsequent perception steps, as illustrated by the performance improvement of a uncertainty aware free space detection algorithm. View Full-Text
Keywords: sensor data fusion; depth sensing; LiDAR; Gaussian Process regression; free space detection; autonomous vehicles; assistive robots sensor data fusion; depth sensing; LiDAR; Gaussian Process regression; free space detection; autonomous vehicles; assistive robots
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

De Silva, V.; Roche, J.; Kondoz, A. Robust Fusion of LiDAR and Wide-Angle Camera Data for Autonomous Mobile Robots. Sensors 2018, 18, 2730.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top