Next Article in Journal
Miniaturisation of Pressure-Sensitive Paint Measurement Systems Using Low-Cost, Miniaturised Machine Vision Cameras
Previous Article in Journal
A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(8), 1700; doi:10.3390/s17081700

High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF

1
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2
Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
3
Electronic and Electronic Engineering Department, University of Sheffield, Sheffield S1-3JD, UK
*
Author to whom correspondence should be addressed.
Received: 18 May 2017 / Revised: 7 July 2017 / Accepted: 21 July 2017 / Published: 25 July 2017
(This article belongs to the Section Remote Sensors)
View Full-Text   |   Download PDF [7105 KB, uploaded 25 July 2017]   |  

Abstract

Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth’s surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and ‘blind ranges’. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated imaging algorithm. View Full-Text
Keywords: high-temporal-resolution; high-spatial-resolution; high-squint-angle; synthetic aperture radar (SAR); continuously varying PRF (CVPRF); high-order imaging algorithm high-temporal-resolution; high-spatial-resolution; high-squint-angle; synthetic aperture radar (SAR); continuously varying PRF (CVPRF); high-order imaging algorithm
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Men, Z.; Wang, P.; Li, C.; Chen, J.; Liu, W.; Fang, Y. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF. Sensors 2017, 17, 1700.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top