Next Article in Journal
Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments
Next Article in Special Issue
Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion
Previous Article in Journal
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications
Previous Article in Special Issue
State Estimation for a Class of Non-Uniform Sampling Systems with Missing Measurements
Article Menu

Export Article

Open AccessArticle
Sensors 2016, 16(8), 1167; doi:10.3390/s16081167

Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

1
Institute of Electrical Control Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
2
Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
*
Author to whom correspondence should be addressed.
Academic Editor: Leonhard M. Reindl
Received: 13 April 2016 / Revised: 28 June 2016 / Accepted: 16 July 2016 / Published: 26 July 2016
(This article belongs to the Special Issue Advances in Multi-Sensor Information Fusion: Theory and Applications)
View Full-Text   |   Download PDF [6326 KB, uploaded 26 July 2016]   |  

Abstract

This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. View Full-Text
Keywords: integrated navigation; cubature Kalman filter; unscented Kalman filter; fuzzy logic integrated navigation; cubature Kalman filter; unscented Kalman filter; fuzzy logic
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Tseng, C.-H.; Lin, S.-F.; Jwo, D.-J. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems. Sensors 2016, 16, 1167.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top