Next Article in Journal
Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules
Previous Article in Journal
A Proposal for Automatic Fruit Harvesting by Combining a Low Cost Stereovision Camera and a Robotic Arm
Article Menu

Export Article

Open AccessArticle
Sensors 2014, 14(7), 11580-11594; doi:10.3390/s140711580

The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

1
Taihu Lake Laboratory Ecosystem Research Station, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Received: 15 May 2014 / Revised: 24 June 2014 / Accepted: 26 June 2014 / Published: 30 June 2014
(This article belongs to the Section Chemical Sensors)
View Full-Text   |   Download PDF [1220 KB, uploaded 30 June 2014]   |  

Abstract

This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r2 = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r2 = 0.91, p < 0.001), the fluorescence index (r2 = 0.88, p < 0.001) and the humification index (r2 = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r2 = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r2 = 0.83, p < 0.001), TP (r2 = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor.
Keywords: chromophoric dissolved organic matter; dissolved organic carbon; fluorescence; real-time monitoring; water quality parameters chromophoric dissolved organic matter; dissolved organic carbon; fluorescence; real-time monitoring; water quality parameters
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Niu, C.; Zhang, Y.; Zhou, Y.; Shi, K.; Liu, X.; Qin, B. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor. Sensors 2014, 14, 11580-11594.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top