Next Article in Journal
Previous Article in Journal
Sensors 2014, 14(7), 11504-11521; doi:10.3390/s140711504
Article

Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model

1,2
, 1
 and 2,*
Received: 30 December 2013; in revised form: 20 May 2014 / Accepted: 25 June 2014 / Published: 27 June 2014
(This article belongs to the Section Physical Sensors)
View Full-Text   |   Download PDF [1585 KB, updated 23 July 2014; original version uploaded 27 June 2014]
Abstract: This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation.
Keywords: mutual inductance; magnetic field; coil; orientation measurement; distributed multiple dipole mutual inductance; magnetic field; coil; orientation measurement; distributed multiple dipole
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Wu, F.; Moon, S.K.; Son, H. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model. Sensors 2014, 14, 11504-11521.

AMA Style

Wu F, Moon SK, Son H. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model. Sensors. 2014; 14(7):11504-11521.

Chicago/Turabian Style

Wu, Fang; Moon, Seung K.; Son, Hungsun. 2014. "Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model." Sensors 14, no. 7: 11504-11521.



Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert