Sensors 2014, 14(2), 3690-3701; doi:10.3390/s140203690
Article

Feature Point Descriptors: Infrared and Visible Spectra

1 CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador 2 Computer Science Department, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona, Spain 3 Computer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra, Barcelona, Spain
* Author to whom correspondence should be addressed.
Received: 17 December 2013; in revised form: 13 February 2014 / Accepted: 14 February 2014 / Published: 21 February 2014
PDF Full-text Download PDF Full-Text [665 KB, uploaded 21 February 2014 14:50 CET]
Abstract: This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
Keywords: cross-spectral imaging; feature point descriptors

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Ricaurte, P.; Chilán, C.; Aguilera-Carrasco, C.A.; Vintimilla, B.X.; Sappa, A.D. Feature Point Descriptors: Infrared and Visible Spectra. Sensors 2014, 14, 3690-3701.

AMA Style

Ricaurte P, Chilán C, Aguilera-Carrasco CA, Vintimilla BX, Sappa AD. Feature Point Descriptors: Infrared and Visible Spectra. Sensors. 2014; 14(2):3690-3701.

Chicago/Turabian Style

Ricaurte, Pablo; Chilán, Carmen; Aguilera-Carrasco, Cristhian A.; Vintimilla, Boris X.; Sappa, Angel D. 2014. "Feature Point Descriptors: Infrared and Visible Spectra." Sensors 14, no. 2: 3690-3701.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert