Sensors 2014, 14(1), 188-211; doi:10.3390/s140100188

Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

1,* email and 2email
Received: 15 November 2013; in revised form: 7 December 2013 / Accepted: 10 December 2013 / Published: 23 December 2013
(This article belongs to the Section Sensor Networks)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries’ stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).
Keywords: energy harvesting; TPMS; piezoceramic; vibration; harmonic excitation energy; damping; FEA
PDF Full-text Download PDF Full-Text [1714 KB, Updated Version, uploaded 21 June 2014 11:06 CEST]
The original version is still available [1686 KB, uploaded 21 June 2014 11:06 CEST]

Export to BibTeX |

MDPI and ACS Style

Kubba, A.E.; Jiang, K. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester. Sensors 2014, 14, 188-211.

AMA Style

Kubba AE, Jiang K. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester. Sensors. 2014; 14(1):188-211.

Chicago/Turabian Style

Kubba, Ali E.; Jiang, Kyle. 2014. "Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester." Sensors 14, no. 1: 188-211.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert