Sensors 2013, 13(6), 7714-7734; doi:10.3390/s130607714
Article

Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines

email and * email
Received: 3 May 2013; in revised form: 29 May 2013 / Accepted: 3 June 2013 / Published: 14 June 2013
(This article belongs to the Section Physical Sensors)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pairs of landmarks tracking results are extracted, and normalized, with respect to the first frame in the sequence. The prototypical expression sequence for each class of facial expression is formed, by taking the median of the landmark tracking results from the training facial expression sequences. Multi-class AdaBoost with dynamic time warping similarity distance between the feature vector of input facial expression and prototypical facial expression, is used as a weak classifier to select the subset of discriminative feature vectors. Finally, two methods for facial expression recognition are presented, either by using multi-class AdaBoost with dynamic time warping, or by using support vector machine on the boosted feature vectors. The results on the Cohn-Kanade (CK+) facial expression database show a recognition accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector machines, respectively.
Keywords: facial landmarks; elastic bunch graph; multi-class AdaBoost; dynamic time warping; facial expression recognition; support vector machines
PDF Full-text Download PDF Full-Text [1159 KB, uploaded 21 June 2014 07:24 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Ghimire, D.; Lee, J. Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines. Sensors 2013, 13, 7714-7734.

AMA Style

Ghimire D, Lee J. Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines. Sensors. 2013; 13(6):7714-7734.

Chicago/Turabian Style

Ghimire, Deepak; Lee, Joonwhoan. 2013. "Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines." Sensors 13, no. 6: 7714-7734.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert