Sensors 2012, 12(9), 12405-12423; doi:10.3390/s120912405
Article

Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision

1,* email and 2email
Received: 6 August 2012; in revised form: 28 August 2012 / Accepted: 30 August 2012 / Published: 12 September 2012
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Italy 2012)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.
Keywords: autonomous agriculture robotics; stereovision; self-learning classifier
PDF Full-text Download PDF Full-Text [7118 KB, uploaded 21 June 2014 04:37 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Reina, G.; Milella, A. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision. Sensors 2012, 12, 12405-12423.

AMA Style

Reina G, Milella A. Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision. Sensors. 2012; 12(9):12405-12423.

Chicago/Turabian Style

Reina, Giulio; Milella, Annalisa. 2012. "Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision." Sensors 12, no. 9: 12405-12423.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert