Next Article in Journal
Previous Article in Journal
Sensors 2012, 12(5), 5752-5774; doi:10.3390/s120505752
Article

Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms

1,2
, 3
, 4,5
, 6
, 2
 and 1,*
Received: 15 March 2012; in revised form: 16 April 2012 / Accepted: 22 April 2012 / Published: 4 May 2012
(This article belongs to the Section Physical Sensors)
View Full-Text   |   Download PDF [888 KB, uploaded 21 June 2014]
Abstract: The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms.
Keywords: poultry building; sensors; air velocity; isotemporal measurements; multipoint measurements; troubleshooting poultry building; sensors; air velocity; isotemporal measurements; multipoint measurements; troubleshooting
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Bustamante, E.; Guijarro, E.; García-Diego, F.-J.; Balasch, S.; Hospitaler, A.; Torres, A.G. Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors 2012, 12, 5752-5774.

AMA Style

Bustamante E, Guijarro E, García-Diego F-J, Balasch S, Hospitaler A, Torres AG. Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors. 2012; 12(5):5752-5774.

Chicago/Turabian Style

Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G. 2012. "Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms." Sensors 12, no. 5: 5752-5774.


Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert