Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Sensors 2011, 11(4), 3545-3594; doi:10.3390/s110403545
Review

A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

* ,
 and
Received: 7 January 2011; in revised form: 1 March 2011 / Accepted: 21 March 2011 / Published: 24 March 2011
(This article belongs to the Special Issue Sensors in Biomechanics and Biomedicine)
View Full-Text   |   Download PDF [2007 KB, updated 21 June 2014; original version uploaded 21 June 2014]
Abstract: Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.
Keywords: muscle fatigue; sEMG; feature extraction; classification muscle fatigue; sEMG; feature extraction; classification
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue. Sensors 2011, 11, 3545-3594.

AMA Style

Al-Mulla MR, Sepulveda F, Colley M. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue. Sensors. 2011; 11(4):3545-3594.

Chicago/Turabian Style

Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin. 2011. "A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue." Sensors 11, no. 4: 3545-3594.


Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert