Next Issue
Previous Issue

Table of Contents

Diversity, Volume 9, Issue 2 (June 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-6
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Molecular Assisted Identification Reveals Hidden Red Algae Diversity from the Burica Peninsula, Pacific Panama
Diversity 2017, 9(2), 19; doi:10.3390/d9020019
Received: 31 January 2017 / Revised: 23 March 2017 / Accepted: 8 April 2017 / Published: 14 April 2017
PDF Full-text (37725 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The marine flora of Panama harbors a rich diversity of green, red and brown algae, and despite chronic understudy, it is reported as the second most diverse marine flora along the Pacific Central American coast, with 174 macroalgal species. Extensive new collections and
[...] Read more.
The marine flora of Panama harbors a rich diversity of green, red and brown algae, and despite chronic understudy, it is reported as the second most diverse marine flora along the Pacific Central American coast, with 174 macroalgal species. Extensive new collections and molecular assisted identification (MAI) by an international team of researchers has revealed an even greater diversity for this country. Here, the intertidal and shallow subtidal marine flora of the remote Burica Peninsula is introduced. This area is characterized by an uplifted extensive intertidal flat composed of firm, sedimentary benthos known as mudrock, on which abundant algal communities thrive, even during extended periods of exposure. A collection of nearly 200 brown, green and red macroalgae specimens representing the first marine floristic inventory of this region was made in January 2011, and results of analyses of 45 foliose red algae specimens are presented. DNA sequence data for several loci (rbcL-3P; COI-5P; UPA) have been generated for molecular assisted identification and to guide morphological assessments. Twenty-six species were identified among the specimens including 21 new Pacific Panama records, as well as previously unrealized transisthmian distributions, and two new species, Neorubra parvolacertoides sp. nov. and Grateloupia irregularis sp. nov. Full article
(This article belongs to the Special Issue Tropical Marine Biodiversity)
Figures

Figure 1

Open AccessArticle The Phylogeny and Biogeography of Phyla nodiflora (Verbenaceae) Reveals Native and Invasive Lineages throughout the World
Diversity 2017, 9(2), 20; doi:10.3390/d9020020
Received: 3 March 2017 / Revised: 1 May 2017 / Accepted: 4 May 2017 / Published: 10 May 2017
Cited by 1 | PDF Full-text (2714 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Phyla nodiflora is an herbaceous perennial and an enigmatic species. It is indigenous to the Americas but is considered a natural component of the flora in many areas and a weed in others. Our aim was to circumscribe the native range of P.
[...] Read more.
Phyla nodiflora is an herbaceous perennial and an enigmatic species. It is indigenous to the Americas but is considered a natural component of the flora in many areas and a weed in others. Our aim was to circumscribe the native range of P. nodiflora, to explore dispersal mechanisms and routes and to test the hypothesis that P. nodiflora is native outside of the Americas. Determining whether distributions are natural or human-induced has implications for decisions regarding weed control or conservation. We undertook phylogenetic analyses using sequence variation in nuclear DNA marker ITS (Internal Transcribed Spacer) for a global sample of 160 populations of P. nodiflora sourced from Asia, Australia, central America, the Mediterranean, southern North America, South America and Africa. Analyses included maximum likelihood, maximum parsimony, a Bayesian estimation of phylogeny and a parsimony network analysis which provided a genealogical reconstruction of ribotypes. We evaluated phylogenies against extensive historical and biogeographical data. Based on the sequences, 64 ribotypes were identified worldwide within P. nodiflora and considerable geographic structure was evident with five clades: one unsupported and the remaining weakly supported (bootstrap support ranging from 52% to 71%). Populations from central and southern North America formed the core area in the indigenous range and we have detected at least three native lineages outside of this range. Within Australia P. nodiflora is represented by at least one native lineage and several post-European introductions. Phyla nodiflora is one of the few species in the family Verbenaceae to have a pan-tropical native distribution, probably resulting from natural dispersal from America to Africa then to Australasia. However, it has also undergone human-mediated dispersal, which has obscured the native-origin of some ribotypes. These introductions present a risk of diluting the pan-tropical structure evident in this species and therefore they have important conservation implications. Full article
(This article belongs to the Special Issue Plant Genetics and Biotechnology in Biodiversity)
Figures

Figure 1

Open AccessArticle Species Richness, Taxonomic Distinctness and Environmental Influences on Euphausiid Zoogeography in the Indian Ocean
Diversity 2017, 9(2), 23; doi:10.3390/d9020023
Received: 29 March 2017 / Revised: 25 May 2017 / Accepted: 27 May 2017 / Published: 31 May 2017
PDF Full-text (4168 KB) | HTML Full-text | XML Full-text
Abstract
Although two thirds of the world’s euphausiid species occur in the Indian Ocean, environmental factors influencing patterns in their diversity across this atypical ocean basin are poorly known. Distribution data for 56 species of euphausiids were extracted from existing literature and, using a
[...] Read more.
Although two thirds of the world’s euphausiid species occur in the Indian Ocean, environmental factors influencing patterns in their diversity across this atypical ocean basin are poorly known. Distribution data for 56 species of euphausiids were extracted from existing literature and, using a geographic information system, spatially-explicit layers of species richness and average taxonomic distinctness (AveTD) were produced for the Indian Ocean. Species richness was high in tropical areas of the southern Indian Ocean (0–20° S), and this high richness extended southwards via the Agulhas and Leeuwin boundary currents. In contrast, the land-locked northern Indian Ocean exhibited lower species richness but higher AveTD, with the presence of the monotypic family Bentheuphausiidae strongly influencing the latter result. Generalised additive modelling incorporating environmental variables averaged over 0–300 m depth indicated that low oxygen concentrations and reduced salinity in the northern Indian Ocean correlated with low species richness. Depth-averaged temperature and surface chlorophyll a concentration were also significant in explaining some of the variation in species richness of euphausiids. Overall, this study has indicated that the patterns in species richness in the Indian Ocean are reflective of its many unusual oceanographic features, and that patterns in AveTD were not particularly informative because of the dominance by the family Euphausiidae. Full article
(This article belongs to the Special Issue Tropical Marine Biodiversity)
Figures

Figure 1

Open AccessArticle The Significance of New Records of Benthic Red Algae (Rhodophyta) for Hainan Island (and China) between 1990 and 2016
Diversity 2017, 9(2), 24; doi:10.3390/d9020024
Received: 3 March 2017 / Revised: 18 April 2017 / Accepted: 25 May 2017 / Published: 31 May 2017
PDF Full-text (6904 KB) | HTML Full-text | XML Full-text
Abstract
We present an annotated list of new finds of red algae from Hainan Island, Southern China, including those found in 1990 and 1992 during the German-Chinese expeditions to Hainan Island and in 2008–2016 by Titlyanova, Titlyanov, and Li. Between 1990 and 1992, a
[...] Read more.
We present an annotated list of new finds of red algae from Hainan Island, Southern China, including those found in 1990 and 1992 during the German-Chinese expeditions to Hainan Island and in 2008–2016 by Titlyanova, Titlyanov, and Li. Between 1990 and 1992, a total of 64 taxa of red algae were newly recorded for Hainan Island. Of these 15 species were new records for China. During the period 2008–2016, a further 54 taxa were newly recorded for Hainan Island, of which 20 were new records for China. The full list of new taxa includes taxonomic forms, dates, and locales, together with known biogeographical distributions. During both periods, the apparent enrichment of red algal marine flora has occurred in a similar way—mainly at the expense of epiphytes with filamentous, thin-filamentous, and finely branched forms. We believe that the changes in the flora of Hainan Island have been influenced by both anthropogenic and natural factors including in particular exploitation of herbivores, nutrient pollution, and coral bleaching. Full article
(This article belongs to the Special Issue Tropical Marine Biodiversity)
Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview Barley Developmental Mutants: The High Road to Understand the Cereal Spike Morphology
Diversity 2017, 9(2), 21; doi:10.3390/d9020021
Received: 23 February 2017 / Revised: 5 May 2017 / Accepted: 6 May 2017 / Published: 11 May 2017
PDF Full-text (84957 KB) | HTML Full-text | XML Full-text
Abstract
A better understanding of the developmental plan of a cereal spike is of relevance when designing the plant for the future, in which innovative traits can be implemented through pre-breeding strategies. Barley developmental mutants can be a Mendelian solution for identifying genes controlling
[...] Read more.
A better understanding of the developmental plan of a cereal spike is of relevance when designing the plant for the future, in which innovative traits can be implemented through pre-breeding strategies. Barley developmental mutants can be a Mendelian solution for identifying genes controlling key steps in the establishment of the spike morphology. Among cereals, barley (Hordeum vulgare L.) is one of the best investigated crop plants and is a model species for the Triticeae tribe, thanks to several characteristics, including, among others, its adaptability to a wide range of environments, its diploid genome, and its self-pollinating mating system, as well as the availability of its genome sequence and a wide array of genomic resources. Among them, large collections of natural and induced mutants have been developed since the 1920s, with the aim of understanding developmental and physiological processes and exploiting mutation breeding in crop improvement. The collections are not only comprehensive in terms of single Mendelian spike mutants, but with regards to double and triple mutants derived from crosses between simple mutants, as well as near isogenic lines (NILs) that are useful for genetic studies. In recent years the integration of the most advanced omic technologies with historical mutation-genetics research has helped in the isolation and validation of some of the genes involved in spike development. New interrogatives have raised the question about how the behavior of a single developmental gene in different genetic backgrounds can help in understanding phenomena like expressivity, penetrance, phenotypic plasticity, and instability. In this paper, some genetic and epigenetic studies on this topic are reviewed. Full article
(This article belongs to the Special Issue Plant Genetics and Biotechnology in Biodiversity)
Figures

Figure 1

Other

Jump to: Research, Review

Open AccessOpinion Persistent Gaps of Knowledge for Naming and Distinguishing Multiple Species of Crown-of-Thorns-Seastar in the Acanthaster planci Species Complex
Diversity 2017, 9(2), 22; doi:10.3390/d9020022
Received: 19 September 2016 / Revised: 18 April 2017 / Accepted: 9 May 2017 / Published: 12 May 2017
Cited by 2 | PDF Full-text (800 KB) | HTML Full-text | XML Full-text
Abstract
Nearly a decade ago, DNA barcoding (partial mitochondrial COI gene sequences) showed that there are at least four species in the Indo-Pacific within what was previously conceived to be a single Crown-of-Thorns-Seastar (COTS) species, Acanthaster planci. Two of these species—A. planci
[...] Read more.
Nearly a decade ago, DNA barcoding (partial mitochondrial COI gene sequences) showed that there are at least four species in the Indo-Pacific within what was previously conceived to be a single Crown-of-Thorns-Seastar (COTS) species, Acanthaster planci. Two of these species—A. planci Linnaeus, 1758, distributed in the North Indian Ocean, and A. mauritiensis de Loriol, 1885, distributed in the South Indian Ocean—have been already unequivocally named. In contrast, the Pacific COTS (proposed name: A. solaris (Schreber, 1795) and the COTS from the Red Sea (still to be named) require further taxonomic work. COI barcoding sequences and Barcode Identification Numbers (BINs) are available for all four COTS species in the global Barcode of Life Database (BOLD). We recommend depositing voucher specimens or tissue samples suitable for DNA analyses when studying any aspect of COTS, and use BINs to identify species, to ensure that no information is lost on species allocation until unequivocal Linnean names are available for the Pacific and Red Sea species as well. We also review the differences between COTS species with respect to morphology, ecology, and toxicity. Future studies should widen the current biogeographic coverage of the different COTS species by strategically sampling neglected areas, especially at the geographic distribution limits of each species, to enhance our understanding of the diversity of this reef coral predator. Full article
Figures

Figure 1

Back to Top