Next Article in Journal
Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics
Previous Article in Journal
QTL Mapping for Fiber Quality and Yield Traits Based on Introgression Lines Derived from Gossypium hirsutum × G. tomentosum
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessCommunication
Int. J. Mol. Sci. 2018, 19(1), 244; https://doi.org/10.3390/ijms19010244

Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7)

1
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
2
Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
*
Author to whom correspondence should be addressed.
Received: 8 October 2017 / Revised: 12 December 2017 / Accepted: 11 January 2018 / Published: 14 January 2018
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
View Full-Text   |   Download PDF [1525 KB, uploaded 14 January 2018]   |  

Abstract

The omega-3 polyunsaturated fatty acid (n-3 PUFA), α-linolenic acid (ALA), and its metabolites, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), independently reduce the growth of breast cancer cells in vitro, but the mechanisms, which may involve microRNA (miRNA), are still unclear. The expression of the oncomiR, miR-21, is reduced by DHA treatment, but the effects of ALA on miR-21, alone or combined with EPA and DHA under physiologically relevant concentrations, have not been investigated. The effects of ALA alone and +/−EPA and DHA at the blood molar ratios seen in either humans (1.0:1.0:2.5, ALA:EPA:DHA) or mice (1.0:0.4:3.1, ALA:EPA:DHA) post flaxseed oil consumption (containing ALA) were assessed in vitro in MCF-7 breast cancer cells. Cell viability and the expression of miR-21 and its molecular target, phosphatase and tension homolog (PTEN, gene and protein), at different time points, were examined. At 1, 3, 48 and 96 h ALA alone and 24 h animal ratio treatments significantly reduced MCF-7 cell viability, while 1 and 3 h ALA alone and human and animal ratio treatments all significantly reduced miR-21 expression, and 24 h animal ratio treatment reduced miR-21 expression; these effects were not associated with changes in PTEN gene or protein expressions. We showed for the first time that ALA alone or combined with EPA and DHA at levels seen in human and animal blood post-ALA consumption can significantly reduce cell viability and modulate miR-21 expression in a time- and concentration-dependent manner, with the animal ratio containing higher DHA having a greater effect. The time dependency of miR-21 effects suggests the significance of considering time as a variable in miRNA studies, particularly of miR-21. View Full-Text
Keywords: breast cancer; n-3 PUFAs; α-linolenic acid; eicosapentaenoic acid; docosahexaenoic acid; microRNA-21 breast cancer; n-3 PUFAs; α-linolenic acid; eicosapentaenoic acid; docosahexaenoic acid; microRNA-21
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

LeMay-Nedjelski, L.; Mason-Ennis, J.K.; Taibi, A.; Comelli, E.M.; Thompson, L.U. Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7). Int. J. Mol. Sci. 2018, 19, 244.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top