Next Article in Journal
Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control
Previous Article in Journal
A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2016, 17(6), 831; doi:10.3390/ijms17060831

Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity

1
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
2
School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
*
Author to whom correspondence should be addressed.
Academic Editor: Charles J. Malemud
Received: 8 March 2016 / Revised: 4 May 2016 / Accepted: 18 May 2016 / Published: 30 May 2016
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
View Full-Text   |   Download PDF [4970 KB, uploaded 30 May 2016]   |  

Abstract

Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn2+ ions, next was Co2+ and Ni2+ ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity. View Full-Text
Keywords: glycerophosphodiester phosphodiesterase; Pyrococcus furiosus DSM 3638; biochemical properties; lysophospholipase D activity; substrate selectivity glycerophosphodiester phosphodiesterase; Pyrococcus furiosus DSM 3638; biochemical properties; lysophospholipase D activity; substrate selectivity
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, F.; Lai, L.; Liu, Y.; Yang, B.; Wang, Y. Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity. Int. J. Mol. Sci. 2016, 17, 831.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top