Use of Propolis in the Sanitization of Lettuce
Abstract
:1. Introduction
2. Results and Discussion
2.1. Propolis Characterization
Family | Pollen Type | Frequency * | Range (%) | Mean (%) | SD |
---|---|---|---|---|---|
Boraginaceae | Echium sp. | SP | 11.4–18.0 | 16.2 | 4.6 |
Ericaceae | Erica sp. | SP | 36.7–43.9 | 41.4 | 3.8 |
Fabaceae | Cytisus sp. | IMP | 3.7–6.6 | 5.2 | 1.3 |
Fagaceae | Castanea sp. | IMP | 8.0–14.0 | 11.9 | 4.1 |
Quercus sp. | MP | 2.2–3.8 | 3 | 0.7 | |
Salicaceae | Populus sp. | SP | 22.0–25.5 | 22.3 | 2.9 |
Result | Moisture | Soluble Substances | Insoluble Substances | pH | Conductivity (mS/cm) | Ash (%) | Waxes (%) | Phenolic Compounds (GAEs) a | Flavonoid Compounds (CAEs) b |
---|---|---|---|---|---|---|---|---|---|
Mean | 6.2 | 65.3 | 38.4 | 4.8 | 2.1 | 2.5 | 10.7 | 29.5 | 10.3 |
SD | 0.5 | 3.7 | 2.5 | 0.1 | 0.3 | 0.1 | 1.9 | 4.2 | 2.5 |
Range | 5.8–6.6 | 60.2–67.3 | 36.4–40.0 | 4.7–4.9 | 2.0–2.5 | 2.4–2.5 | 9.9–11.6 | 23.3–32.0 | 8.9–11.9 |
2.2. Effectiveness of Sanitizing Treatments
Treatment * | Aerobic Mesophiles | Psychrotrophic | Fecal Coliforms | E. coli a | Salmonella b | S. aureus a | Sulphite-Reducing Clostridia c | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RTE | FWH | RTE | FWH | RTE | FWH | RTE | FWH | RTE | FWH | RTE | FWH | RTE | FWH | |
– | 4.95 | 5.8 | 5.25 | 5.8 | 1.9 | 2.15 | ND | ND | ND | D | <2 | ˂2 | ND | ND |
TW-15' | 3.85 | 4.7 | 4.6 | 4.7 | 1.4 | 1.95 | ND | ND | ND | D | ˂2 | ˂2 | ND | ND |
PS-15' | 2.4 | 3.2 | 3.1 | 3.4 | 0.5 | 1.2 | ND | ND | ND | ND | ˂2 | ˂2 | ND | ND |
SH-15' | 2.45 | 3.35 | 3.5 | 3.8 | 0.8 | 1.4 | ND | ND | ND | ND | ˂2 | ˂2 | ND | ND |
TW-30' | 3.6 | 4.45 | 3.45 | 4.7 | 1.4 | 0.9 | ND | ND | ND | ND | ˂2 | ˂2 | ND | ND |
PS-30' | 2.15 | 2.55 | 2.25 | 3 | 0.3 | 1.1 | ND | ND | ND | ND | ˂2 | ˂2 | ND | ND |
SH-30' | 2.25 | 2.75 | 2.6 | 3.25 | 0.6 | 1.3 | ND | ND | ND | ND | ˂2 | ˂2 | ND | ND |
Treatment * | Aerobic Mesophiles | Psychrotrophic | Fecal Coliforms | |||
---|---|---|---|---|---|---|
RTE | FWH | RTE | FWH | RTE | FWH | |
TW-15' | 1.1 | 1.1 | 0.65 | 1.1 | 0.5 | 0.2 |
PS-15' | 2.55 | 2.6 | 2.15 | 2.4 | 1.4 | 0.95 |
SH-15' | 2.5 | 2.45 | 2.15 | 2 | 1.1 | 0.75 |
TW-30' | 1.35 | 1.35 | 1.8 | 1.1 | 0.5 | 1.25 |
PS-30' | 2.8 | 3.25 | 3 | 2.8 | 1.6 | 1.05 |
SH-30' | 2.7 | 3.05 | 2.65 | 2.55 | 1.3 | 0.85 |
Microorganism | FWH p-Value | RTE p-Value | ||
---|---|---|---|---|
Treatment | Time | Treatment | Time | |
Aerobic mesophiles | <0.001 | 0.047 | <0.001 | 0.046 |
Psychrotrophic | <0.001 | 0.094 | 0.008 | 0.004 |
Fecal coliforms | <0.001 | 0.533 | <0.001 | 0.710 |
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Apparatus
3.3. Propolis
3.3.1. Sampling
3.3.2. Palynological Identification
3.3.3. Physicochemical Analysis
Moisture
Ash Content
Electrical Conductivity
pH
Soluble and Insoluble Substances
Wax
3.3.4. Extract Preparation
3.3.5. Total Phenolics and Flavonoids
3.4. Lettuce
3.4.1. Sampling
3.4.2. Preparation of Sanitizing Solutions
3.4.3. Sanitizing Treatments
3.5. Microbiological Analysis
3.5.1. Sample Preparation
3.5.2. Enumeration of the Mesophilic and Psychrotrophic Microorganisms
3.5.3. Enumeration of Total Coliforms and Escherichia coli (E.coli)
3.5.4. Enumeration of Sulphite Reducing Clostridium Spores
3.5.5. Enumeration of S. aureus
3.5.6. Detection of Salmonella sp.
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Dobrowolski, J.W.; Vohora, S.B.; Sharma, K.; Shah, S.A.; Naqvi, S.A.; Dandiya, P.C. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J. Ethnopharmacol. 1991, 35, 77–82. [Google Scholar] [CrossRef]
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid.-Based Complement. Altern. Med. 2013, 2013, 964149. [Google Scholar]
- Farooqui, T.; Farooqui, A.A. Beneficial effects of propolis on human health and neurological diseases. Front. Biosci. 2012, 4, 779–793. [Google Scholar] [CrossRef]
- Moreira, L.; Dias, L.G.; Pereira, J.A.; Estevinho, L. Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem. Toxicol. 2008, 46, 3482–3485. [Google Scholar] [CrossRef]
- Banskota, A.H.; Tezuka, Y.; Adnyana, I.K.; Ishii, E.; Midorikawa, K.; Matsushige, K.; Kadota, S. Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 2001, 8, 16–23. [Google Scholar] [CrossRef]
- Libério, S.A.; Pereira, A.L.; Araújo, M.J.; Dutra, R.P.; Nascimento, F.R.; Monteiro Neto, V.; Ribeiro, M.N.; Gonçalves, A.G.; Guerra, R.N. The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci. J. Ethnopharmacol. 2009, 125, 1–9. [Google Scholar] [CrossRef]
- Valente, M.J.; Baltazar, A.F.; Henrique, R.; Estevinho, L.M.; Carvalho, M. Biological activities of Portuguese propolis: Protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro. Food Chem. Toxicol. 2011, 49, 86–92. [Google Scholar] [CrossRef]
- Berger, C.N.; Sodha, S.V.; Shaw, R.K.; Griffin, P.M.; Pink, D.; Hand, P.; Frankel, G. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 2010, 12, 2385–2397. [Google Scholar] [CrossRef]
- Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef]
- Sapers, G.M. Efficacy of washing and sanitizing methods. Food Technol. Biotechnol. 2001, 39, 305–311. [Google Scholar]
- Davidson, P.M.; Harrison, M.A. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 2002, 56, 69–78. [Google Scholar]
- Bachelli, M.L.; Amaral, R.D.; Benedetti, B.C. Alternative sanitization methods for minimally processed lettuce in comparison to sodium hypochlorite. Braz. J. Microbiol. 2013, 44, 673–678. [Google Scholar] [CrossRef]
- Barry-Ryan, C.; Martin-Diana, A.; Rico, D.; Barat, J. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Ponce, A.G.; Mazzucotelli, C.A.; Moreira, M.R. The impact of biopreservatives and storage temperature in the quality and safety of minimally processed mixed vegetables for soup. J. Sci. Food Agric. 2014. accepted manuscript. [Google Scholar]
- Koc, A.N.; Silici, S.; Mutlu-Sariguzel, F.; Sagdic, O. Antifungal activity of propolis in four different fruit juices. Food Technol. Biotechnol. 2007, 45, 57–61. [Google Scholar]
- Ippolito, A.; Nigro, F. Natural antimicrobials in postharvest storage of fresh fruits and vegetables. In Natural Antimicrobials for the Minimal Processing of Foods; CRC Press: Boca Raton, FL, USA, 2003; pp. 201–234. [Google Scholar]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. Evid.-Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef]
- Pires, S.M.A.; Rodrigues, T.; Rocha, A.; Pajuelo, A.; Pereira, O. Pollen spectra of honeys from Trás-os-Montes e Alto Douro. Rev. Port. Zootec. 2005, 12, 87–99. (In Portuguese) [Google Scholar]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.; Cardoso, S. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef]
- Dias, L.G.; Pereira, A.P.; Estevinho, L.M. Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food Chem. Toxicol. 2012, 50, 4246–4253. [Google Scholar] [CrossRef]
- Salonem, A.; Saarnio, S.; Julkunen-Tiitto, R. Phenolic compounds of propolis from Boreal Coniferous zone. J. Apicult. Sci. 2012, 56, 13–22. [Google Scholar]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Sousa, J.P.B.; Furtado, N.A.J.C.; Jorge, R.; Soares, A.E.E.; Bastos, J.K. Perfis físico-químico e cromatográfico de amostras de própolis produzidas nas microrregiões de Franca (SP) e Passos (MG), Brasil. Braz. J. Pharmacog. 2007, 17, 85–93. (In Portuguese) [Google Scholar]
- Castro-Rosas, J.; Cerna-Cortés, J.F.; Méndez-Reyes, E.; Lopez-Hernandez, D.; Gómez-Aldapa, C.A.; Estrada-Garcia, T. Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. Int. J. Food Microbiol. 2012, 156, 176–180. [Google Scholar]
- Oliveira, M.A.D.; Maciel de Souza, V.; Morato Bergamini, A.M.; de Martinis, E.C.P. Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control 2011, 22, 1400–1403. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Pestana, N.; Peixe, L.; Novais, C.; Antunes, P. Microbiological quality of ready-to-eat salads: An underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int. J. Food Microbiol. 2013, 166, 464–470. [Google Scholar] [CrossRef]
- Islam, M.; Morgan, J.; Doyle, M.P.; Phatak, S.C.; Millner, P.; Jiang, X. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 2004, 70, 2497–2502. [Google Scholar] [CrossRef]
- Santos, M.; Correia, C.; Cunha, M.; Saraiva, M.; Novais, M. Valores Guia para avaliação da qualidade microbiológica de alimentos cozinhados prontos a comer. Rev. Ordem Farm. 2005, 64, 66–68. (In Portuguese) [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar]
- Huang, A.-T.; Batterman, S. Formation of trihalomethanes in foods and beverages. Food Addit. Contam. 2009, 26, 947–957. [Google Scholar] [CrossRef]
- Propolis: Composition, Health, Medicine: A Review. Available online: http://www.bee-hexagon.net/files/file/fileE/Health/PropolisBookReview.pdf (accessed on 11 March 2014).
- Tsuchiya, H.; Linuma, M. Reduction of membrane fluidity by antibacterial sophoraflavone G isolated from Sophora exigua. Phytomedicine 2000, 7, 161–165. [Google Scholar] [CrossRef]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- CUPOD, Cambridge University Palynological Online Database. Available online: http://www.quaternary.group.cam.ac.uk/pollen/ (accessed on 20 April 2014).
- NP 3788. In Microbiologia Alimentar—Regras Gerais Para a Contagem de Microorganismos a 30 °C; Instituto Português da Qualidade: Monte de Caparica, Portugal, 2002.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Feldsine, P.T.; Lienau, A.H.; Roa, N.H.; Green, S.T. Enumeration of total coliforms and E. coli in foods by the sim plate coliform and E. coli color indicator method and conventional culture methods: Collaborative study. J. AOAC Int. 2005, 88, 5. [Google Scholar]
- ISO 15213:2003. Available online: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=26852 (accessed on 20 April 2014).
- NP 4400–1. In Microbiologia Alimentar: Norma Portuguesa: Regras Gerais Para Contagem de Estafilococos Coagulase Positiva: Parte 1: Técnica Com Confirmação de Colónias (Método Corrente); Instituto Português da Qualidade: Monte de Caparica, Portugal, 2002.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Feás, X.; Pacheco, L.; Iglesias, A.; Estevinho, L.M. Use of Propolis in the Sanitization of Lettuce. Int. J. Mol. Sci. 2014, 15, 12243-12257. https://doi.org/10.3390/ijms150712243
Feás X, Pacheco L, Iglesias A, Estevinho LM. Use of Propolis in the Sanitization of Lettuce. International Journal of Molecular Sciences. 2014; 15(7):12243-12257. https://doi.org/10.3390/ijms150712243
Chicago/Turabian StyleFeás, Xesús, Lazaro Pacheco, Antonio Iglesias, and Leticia M. Estevinho. 2014. "Use of Propolis in the Sanitization of Lettuce" International Journal of Molecular Sciences 15, no. 7: 12243-12257. https://doi.org/10.3390/ijms150712243
APA StyleFeás, X., Pacheco, L., Iglesias, A., & Estevinho, L. M. (2014). Use of Propolis in the Sanitization of Lettuce. International Journal of Molecular Sciences, 15(7), 12243-12257. https://doi.org/10.3390/ijms150712243