Next Article in Journal
Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)
Next Article in Special Issue
Genetic Variations rs11892031 and rs401681 Are Associated with Bladder Cancer Risk in a Chinese Population
Previous Article in Journal
Right or Left: The Role of Nanoparticles in Pulmonary Diseases
Previous Article in Special Issue
The Adenosine Deaminase Gene Polymorphism Is Associated with Chronic Heart Failure Risk in Chinese
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2014, 15(10), 17601-17621; doi:10.3390/ijms151017601

Hope for GWAS: Relevant Risk Genes Uncovered from GWAS Statistical Noise

Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, Lisboa 1649-016, Portugal
Centre for Biodiversity, Functional & Integrative Genomics, Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal
Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
Author to whom correspondence should be addressed.
Received: 30 April 2014 / Revised: 1 September 2014 / Accepted: 22 September 2014 / Published: 29 September 2014
(This article belongs to the Collection Human Single Nucleotide Polymorphisms and Disease Diagnostics)
View Full-Text   |   Download PDF [2087 KB, uploaded 29 September 2014]   |  


Hundreds of genetic variants have been associated to common diseases through genome-wide association studies (GWAS), yet there are limits to current approaches in detecting true small effect risk variants against a background of false positive findings. Here we addressed the missing heritability problem, aiming to test whether there are indeed risk variants within GWAS statistical noise and to develop a systematic strategy to retrieve these hidden variants. Employing an integrative approach, which combines protein-protein interactions with association data from GWAS for 6 common diseases, we found that associated-genes at less stringent significance levels (p < 0.1) with any of these diseases are functionally connected beyond noise expectation. This functional coherence was used to identify disease-relevant subnetworks, which were shown to be enriched in known genes, outperforming the selection of top GWAS genes. As a proof of principle, we applied this approach to breast cancer, supporting well-known breast cancer genes, while pinpointing novel susceptibility genes for experimental validation. This study reinforces the idea that GWAS are under-analyzed and that missing heritability is rather hidden. It extends the use of protein networks to reveal this missing heritability, thus leveraging the large investment in GWAS that produced so far little tangible gain. View Full-Text
Keywords: genome-wide association studies (GWAS); missing heritability; protein-protein interaction networks; functional coherence genome-wide association studies (GWAS); missing heritability; protein-protein interaction networks; functional coherence

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Correia, C.; Diekmann, Y.; Vicente, A.M.; Pereira-Leal, J.B. Hope for GWAS: Relevant Risk Genes Uncovered from GWAS Statistical Noise. Int. J. Mol. Sci. 2014, 15, 17601-17621.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top