Int. J. Mol. Sci. 2013, 14(6), 12893-12913; doi:10.3390/ijms140612893
Article

Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures

1email, 2email and 1,* email
Received: 8 April 2013; in revised form: 15 May 2013 / Accepted: 27 May 2013 / Published: 20 June 2013
(This article belongs to the Special Issue Self-Assembled Soft Matter Nanostructures at Interfaces)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Adjusting the inter-particle distances in ordered nanoparticle arrays can create new nano-devices and is of increasing importance to a number of applications such as nanoelectronics and optical devices. The assembly of negatively charged polystyrene (PS) nanoparticles (NPs) on Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, quaternized PDMAEMA brushes and Si/PEI/(PSS/PAH)2, was studied using dip- and spin-coating techniques. By dip-coating, two dimensional (2-D), randomly distributed non-close packed particle arrays were assembled on Si/PEI/(PSS/PAH)2 and PDMAEMA brushes. The inter-particle repulsion leads to lateral mobility of the particles on these surfaces. The 200 nm diameter PS NPs tended to an inter-particle distance of 350 to 400 nm (center to center). On quaternized PDMAEMA brushes, the strong attractive interaction between the NPs and the brush dominated, leading to clustering of the particles on the brush surface. Particle deposition using spin-coating at low spin rates resulted in hexagonal close-packed multilayer structures on Si/PEI/(PSS/PAH)2. Close-packed assemblies with more pronounced defects are also observed on PDMAEMA brushes and QPDMAEMA brushes. In contrast, randomly distributed monolayer NP arrays were achieved at higher spin rates on all polyelectrolyte architectures. The area fraction of the particles decreased with increasing spin rate.
Keywords: self-assembly; polystyrene nanoparticles; dip-coating; spin-coating; non-close packed; polyelectrolyte brushes; PDMAEMA brushes; multilayer films; particle deposition; interface
PDF Full-text Download PDF Full-Text [22880 KB, uploaded 19 June 2014 04:57 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Yenice, Z.; Karg, M.; Klitzing, R.V. Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures. Int. J. Mol. Sci. 2013, 14, 12893-12913.

AMA Style

Yenice Z, Karg M, Klitzing RV. Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures. International Journal of Molecular Sciences. 2013; 14(6):12893-12913.

Chicago/Turabian Style

Yenice, Zuleyha; Karg, Matthias; Klitzing, Regine V. 2013. "Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures." Int. J. Mol. Sci. 14, no. 6: 12893-12913.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert