Int. J. Mol. Sci. 2011, 12(7), 4488-4503; doi:10.3390/ijms12074488
Article

Steady State–Hopf Mode Interactions at the Onset of Electroconvection in the Nematic Liquid Crystal Phase V

Received: 13 May 2011; in revised form: 28 June 2011 / Accepted: 6 July 2011 / Published: 13 July 2011
(This article belongs to the Special Issue Liquid Crystals 2011)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: We report on a new mode interaction found in electroconvection experiments on the nematic liquid crystal mixture Phase V in planar geometry. The mode interaction (codimension two) point occurs at a critical value of the frequency of the driving AC voltage. For frequencies below this value the primary pattern-forming instability at the onset voltage is an oblique stationary instability involving oblique rolls, and above this value it is an oscillatory instability giving rise to normal traveling rolls (oriented perpendicular to and traveling in the director direction). The transition has been confirmed by measuring the roll angle and the dominant frequency of the time series, as both quantities exhibit a discontinuous jump across zero when the AC frequency is varied near threshold. The globally coupled system of Ginzburg–Landau equations that qualitatively describe this mode interaction is constructed, and the resulting normal form, in which slow spatial variations of the mode amplitudes are ignored, is analyzed. This analysis shows that the Ginzburg–Landau system provides the adequate theoretical description for the experimentally observed phenomenon. The experimentally observed patterns at and higher above the onset allow us to narrow down the range of the parameters in the normal form.
Keywords: nematic liquid crystals; electrohydrodynamic convection; mode interactions; pattern formation; amplitude equations
PDF Full-text Download PDF Full-Text [1528 KB, uploaded 19 June 2014 03:53 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Acharya, G.; Dangelmayr, G.; Gleeson, J.; Oprea, I. Steady State–Hopf Mode Interactions at the Onset of Electroconvection in the Nematic Liquid Crystal Phase V. Int. J. Mol. Sci. 2011, 12, 4488-4503.

AMA Style

Acharya G, Dangelmayr G, Gleeson J, Oprea I. Steady State–Hopf Mode Interactions at the Onset of Electroconvection in the Nematic Liquid Crystal Phase V. International Journal of Molecular Sciences. 2011; 12(7):4488-4503.

Chicago/Turabian Style

Acharya, Gyanu; Dangelmayr, Gerhard; Gleeson, James; Oprea, Iuliana. 2011. "Steady State–Hopf Mode Interactions at the Onset of Electroconvection in the Nematic Liquid Crystal Phase V." Int. J. Mol. Sci. 12, no. 7: 4488-4503.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert