Bioactive Peptides from Walnut Residue Protein
Abstract
:1. Introduction
2. Preparation of WBP
2.1. Enzymatic Preparation
2.2. Fermentation Preparation
3. Isolation and Purification of WBP
4. Identification of Walnut Active Peptide
5. WBPs with Different Functions
5.1. Antioxidant Peptide
5.2. Antihypertensive Active Peptide
5.3. Xanthine Oxidase Inhibitory Peptide
6. Conclusions and Prospects
6.1. Market Prospect of WBP
6.2. Research Direction of Walnut Peptide in the Future
Funding
Conflicts of Interest
References
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef]
- Khan, N.A.; Bostan, N.; Ali, N.; Anjum, M.M.; Iqbal, A.; Khan, F.; Khan, I.; Room, B.; Latif, A. Screening and evaluation of exotic and indigenous walnut genotype and varieties. Agric. Res. Tech. 2017, 7, 555709. [Google Scholar]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Tapia, M.I.; Sánchez-Morgado, J.R.; García-Parra, J.; Ramírez, R.; Hernández, T.; González-Gómez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Labuckas, D.O.; Maestri, D.M.; Perello, M.; Martinez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Bhargava, U.C.; Westfall, B.A. Antitumor activity of Juglans nigra (black walnut) extractives. J. Pharm. Sci. 1968, 57, 1674–1677. [Google Scholar] [CrossRef]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.A.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, M.; Sato, M.; Kono, M.; Hirooka, Y.; Sakai, K.; Takeshita, A.; Imaizumi, K. Walnuts lower serum cholesterol in Japanese men and women. J. Nutr. 2000, 130, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Tapsell, L.C.; Gillen, L.J.; Patch, C.S.; Batterham, M.; Owen, A.; Baré, M.; Kennedy, M. Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004, 27, 2777–2783. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M. Walnuts decrease risk of cardiovascular disease: A summary of efficacy and biologic mechanisms. J. Nutr. 2014, 144, 547S–554S. [Google Scholar] [CrossRef] [Green Version]
- Rabadán, A.; Pardo, J.E.; Gómez, R.; Álvarez-Ortí, M. Evaluation of physical parameters of walnut and walnut products obtained by cold pressing. LWT 2018, 91, 308–314. [Google Scholar] [CrossRef]
- Gu, M.; Chen, H.P.; Zhao, M.M.; Wang, X.; Yang, B.; Ren, J.Y.; Su, G.W. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci. Technol. 2015, 60, 213–220. [Google Scholar] [CrossRef]
- Sze-Tao, K.W.C.; Sathe, S.K. Walnuts (Juglans regia L): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J. Sci. Food Agric. 2000, 80, 1393–1401. [Google Scholar] [CrossRef]
- Savage, G.P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Foods Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Protein and amino acid requirements in human nutrition. World Health Organization Technical Report(935) 2007. Available online: https://www.who.int/nutrition/publications/nutrientrequirements/WHO_TRS_935/en/ (accessed on 9 February 2020).
- Mao, X.; Hua, Y. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). Int. J. Mol. Sci. 2012, 13, 1561–1581. [Google Scholar] [CrossRef] [Green Version]
- Arranz, S.; Pérez-Jiménez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2008, 227, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Clare, D.A.; Swaisgood, H.E. Bioactive milk peptides: A prospectus. J. Dairy Sci. 2000, 83, 1187–1195. [Google Scholar] [CrossRef]
- Chen, N.; Yang, H.; Sun, Y.; Niu, J.; Liu, S. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 2012, 38, 344–349. [Google Scholar] [CrossRef]
- Wang, F.J.; Yin, X.Y.; Regenstein, J.M.; Wang, J.Z. Separation and purification of angiotensin-I-converting enzyme (ACE) inhibitory peptides from walnuts (Juglans regia L.) meal. Eur. Food Res. Technol. 2016, 242, 911–918. [Google Scholar] [CrossRef]
- Feng, L.; Peng, F.; Wang, X.; Li, M.; Lei, H.; Xu, H. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food Res. Int. 2019, 116, 518–526. [Google Scholar] [CrossRef]
- Carrillo, W.; Gómez-Ruiz, J.A.; Ruiz, A.L.; Carvalho, J.E. Antiproliferative activity of walnut (Juglans regia L.) proteins and walnut protein hydrolysates. J. Med. Food 2017, 20, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tu, M.; Wu, D.; Chen, H.; Chen, C.; Wang, Z.Y.; Jiang, L.Z. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism. Int. J. Mol. Sci. 2018, 19, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Hou, Y.K.; Li, D.; Wang, J.Z.; Wang, F.J. Separation, purification, and identification of angiotensin I–converting enzyme inhibitory peptides from walnut (Juglansregia L.) hydrolyzate. Int. J. Food Prop. 2015, 18, 266–276. [Google Scholar] [CrossRef]
- Liu, M.C.; Yang, S.J.; Hong, D.; Yang, J.P.; Liu, M.; Lin, Y.; Huang, C.H.; Wang, C.J. A simple and convenient method for the preparation of antioxidant peptides from walnut (Juglansregia L.) protein hydrolysates. Chem. Cent. J. 2016, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Wei, K.H.; Meng, X.G.; Huang, Y.J.; Zhang, T.; Li, Z. Separation and identification of iron-chelating peptides from defatted walnut flake by nanoLC-ESI-MS/MS and de novo sequencing. Proc. Biochem. 2017, 59, 223–228. [Google Scholar] [CrossRef]
- Lv, S.; Taha, A.; Hu, H.; Lu, Q.; Pan, S. Effects of Ultrasonic-Assisted Extraction on the Physicochemical Properties of Different Walnut Proteins. Molecules 2019, 24, 4260. [Google Scholar] [CrossRef] [Green Version]
- Li, T.L.; Wu, C.Y.; Liao, J.Q.; Jiang, T.; Xu, H.D.; Lei, H.J. Application of Protein Hydrolysates from Defatted Walnut Meal in High-Gravity Brewing to Improve Fermentation Performance of Lager Yeast. Appl. Biochem. Biotech. 2019, 1–13. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, D.F.; Li, X.Y.; Dong, H.Z. High-Pressure Homogenization Pretreatment before Enzymolysis of Soy Protein Isolate: The Effect of Pressure Level on Aggregation and Structural Conformations of the Protein. Molecules 2018, 23, 1775. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.C.; Yu, L.N.; Yang, Q.L.; Sun, J.; Bi, J.; Liu, S.F.; Zhang, C.S.; Tang, L. Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides. Molecules 2012, 17, 5661–5674. [Google Scholar] [CrossRef]
- Walters, M.E.; Esfandi, R.; Tsopmo, A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods 2018, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.Z.; Lai, T.; Chen, L.Y.; Fu, J.N.; Sreenivasan, S.T.; Yu, Z.Q.; Ren, J.Y. Synthesis and characterization of a walnut peptides–zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis. J. Agric. Food Chem. 2016, 64, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Li, A.P.; Zhong, Z.C.; Yu, Z.F. Antibacterial activity and structural characterization of peach kernelpeptide-ferrous chelate. Food Sci. 2019, 40, 57–62, (in Chinese with English abstract). [Google Scholar] [CrossRef]
- Gao., R.X.; Yan, Q.Z.; Yue, Z.Z.; Lei, H.J.; Xu, H.D. Polypeptide Production from Cold-Pressed Walnut Meal by Liquid-State Fermentation. Food Sci. 2016, 37, 190–196. [Google Scholar]
- Wu, W.X.; Zhao, S.L.; Chen, C.Y.; Ge, F.; Liu, D.Q.; He, X.M. Optimization of production conditions for antioxidant peptides from walnut protein meal using solid-state fermentation. Food Sci. Biotech. 2014, 23, 1941–1949. [Google Scholar] [CrossRef]
- Zheng, X.; Li, D.S.; Ding, K. Purification and identification of angiotensin I-converting enzyme inhibitory peptides from fermented walnut residues. Int. J. Food Prop. 2017, 20, S3326–S3333. [Google Scholar] [CrossRef]
- Viniegra-González, G.; Favela-Torres, E.; Aguilar, C.N.; Rómero-Gomez, S.D.; Díaz-Godínez, G.; Augur, C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003, 13, 157–167. [Google Scholar] [CrossRef]
- Diaz, J.C.M.; Rodríguez, J.A.; Roussos, S.; Cordova, J.; Abousalham, A.; Carriere, F.; Baratti, J. Lipase from the thermotolerant fungus Rhizopushomothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Tech. 2006, 39, 1042–1050. [Google Scholar] [CrossRef]
- Mienda, B.S.; Idi, A.; Umar, A. Microbiological features of solid state fermentation and its applications-An overview. Res. Biotechnol. 2011, 2, 21–26. [Google Scholar]
- Liu, M.; Du, M.; Zhang, Y.C.; Xu, W.L.; Wang, C.; Wang, K.J.; Zhang, L.W. Purification and identification of an ACE inhibitory peptide from walnut protein. Agric. Food Chem. 2013, 61, 4097–4100. [Google Scholar] [CrossRef]
- Wang, C.; Song, W.; Jiang, L.; Du, M. Purification and identification of an ACE-inhibitory peptide from walnut protein hydrolysate. Eur. Food Res. Technol. 2014, 239, 333–338. [Google Scholar] [CrossRef]
- Chen, N.; Sun, Y.; Liu, S.Y. Preparation and Antioxidant Activities of Walnut Protein Hydrolysates. Chem. J. Chin. Univ. 2013, 34, 72–76. [Google Scholar] [CrossRef]
- Chen, H.P.; Zhao, M.M.; Lin, L.Z.; Wang, J.F.; Sun-Waterhouse, D.G.; Dong, Y.; Zhuang, M.Z.; Su, J.W. Show more Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int. 2015, 78, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agric. Food Chem. 2019, 67, 3305–3312. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. J. Biomed. Biotechnol. 2014, 2014, 608979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.; Ren, D.Y.; Cui, L.Y.; Liu, C.L.; Wang, J.; Liu, W.; Min, W.H.; Liu, J.S. Antifatigue, Antioxidant and Immunoregulatory Effects of Peptides Hydrolyzed from Manchurian Walnut (Juglans mandshurica Maxim.) on Mice. Grain Oil Sci. Tech. 2018, 1, 44–52. [Google Scholar]
- Ma, S.; Huang, D.; Zhai, M.X.; Yang, L.B.; Peng, S.; Chen, C.X.; Feng, X.R.; Wen, Q.; Zhang, B.L.; Xu, M.Y. Isolation of a novel biopeptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. BMC Complement Altern. Med. 2015, 15, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress. J. Agric. Food Chem. 2018, 66, 10617–10627. [Google Scholar] [CrossRef]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Wattanasiritham, L.; Theerakulkait, C.; Wickramasekara, S.; Maier, C.S.; Stevens, J.F. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food. Chem. 2016, 192, 156–162. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Quiros, A.; Amigo, L.; Recio, I. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int. Dairy J. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Ren, D.Y.; Zhao, F.R.; Liu, C.L.; Wang, J.; Guo, Y.; Liu, J.S.; Min, W.H. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglansmandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. J. Sci. Food Agr. 2018, 98, 5142–5152. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, L.; Du, Q.; Ren, J.W.; Chen, Q.H.; Li, D.; Mao, R.X.; Liu, X.R.; Li, Y. Small Molecule Oligopeptides Isolated from Walnut (Juglansregia L.) and Their Anti-Fatigue Effects in Mice. Molecules 2019, 24, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Fang, H.; Luo, M.; Sheng, Y.; Li, Z.X.; Wang, Y.Q.; Liu, C. The antihypertensive effect of peptides: A novel alternative to drugs? Peptides 2008, 29, 1062–1071. [Google Scholar]
- Oshima, G.; Shimabukuro, H.; Nagasawa, K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. BBA-Bioenergetics 1979, 566, 128–137. [Google Scholar] [CrossRef]
- Jahanbani, R.; Ghaffari, S.M.; Salami, M.; Vahdati, K.; Moosavi-Movahedi, A.A. Antioxidant and anticancer activities of walnut (juglans regia l.) protein hydrolysates using different proteases. Foods Hum. Nutr. 2016, 71, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y. Purification, Characterization and Characterization of ACE Inhibitory Peptide from Walnut Protein. Master’s Thesis, Shanxi University of Science and Technology, Xian, China, 2015. [Google Scholar]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues. QSAR Comb. Sci. 2006, 25, 873–880. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Aluko, R.E. Structure and function of plant protein-derived antihypertensive peptides. Curr. Opin. Food Sci. 2015, 4, 44–50. [Google Scholar] [CrossRef]
- Borghi, C.; Reggi, A.; Pavesi, A.; Cicero, A.F. Increased Serum Uric Acid as a Risk Factor for Cardiovascular Diseases. Curr. Obes. Rep. 2013, 2, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Gheita, T.A.; El-Fishawy, H.S.; Nasrallah, M.M.; Hussein, H. Insulin resistance and metabolic syndrome in primary gout: Relation to punched-out erosions. Int. J. Rheum. Dis. 2012, 15, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Filiopoulos, V.; Hadjiyannakos, D.; Vlassopoulos, D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren. Fail. 2012, 34, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Stamp, L.K.; Barclay, M.L. How to prevent allopurinol hypersensitivity reactions? Rheumatology 2017, 57, i35–i41. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.M.; Xu, J.C.; Liu, Y.; Zhao, R.Z.; Wu, C.P.; Su, G.W. Technology optimization on preparation of XOD inhibition peptide from Saury. Trans. CSAE 2015, 31, 291–297. [Google Scholar] [CrossRef]
- Li, Q.Y.; Kang, X.Y.; Shi, C.C.; Li, Y.J.; Majumder, K.; Ning, Z.X.; Ren, J.Y. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food Funct. 2018, 9, 107–116. [Google Scholar] [CrossRef]
- Li, Q.Y.; Shi, C.C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E.D.; Wang, Z.; Yao, M.J.; Ren, J. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J. Funct. Foods 2019, 53, 276–285. [Google Scholar] [CrossRef]
- Su, G.W.; Zhao, M.M.; Zhao, Q.Z.; Cui, C.; Sun, W.Z. Amethod for the preparation of bioactive peptides with the effect of reducing uric acid from walnut meal. CN201310485124.9, 12 March 2014. [Google Scholar]
- Daliri, B.M.; Oh, D.H.; Lee, B.H. Bioactive peptides. Foods 2017, 6, 1–21. [Google Scholar] [CrossRef]
Amino Acids | DFWF | WPC | WPI | WHO/FAO/UNU (2007) * | |||
---|---|---|---|---|---|---|---|
1–2 | 3–10 | 11–14 | Adults | ||||
Met | 1.160.02 b | 0.990.08 b | 1.440.10 a | 1.6 | |||
Val | 4.180.21 b | 3.500.18 c | 4.620.10 a | 4.2 | 4.0 | 4.0 | 3.9 |
Thr | 3.580.21 a | 2.550.09 b | 3.300.12 a | 2.7 | 2.5 | 2.5 | 2.3 |
His | 2.380.13 a | 1.890.09 b | 2.300.10 a | 1.8 | 1.6 | 1.6 | 1.5 |
Ile | 3.280.10 b | 3.030.09 b | 3.990.06 a | 3.1 | 3.1 | 30 | 3.0 |
Leu | 7.130.07 a | 5.640.12 b | 7.290.08 a | 6.3 | 6.1 | 6.0 | 5.9 |
Lys | 2.580.05 a | 2.010.07 b | 2.130.11 b | 5.2 | 4.8 | 4.8 | 4.5 |
Cys | 0.840.06 a | 0.700.12 b | 0.810.15 a | 0.6 | |||
Phe | 4.940.05 a | 3.490.07 b | 4.610.12 a | 3.8 ** | |||
Tyr | 2.760.22 b | 2.300.13 b | 3.210.09 a | 3.8 ** | |||
Trp | 5.500.02 | 7.4 | 6.6 | 6.5 | 6.0 | ||
Pro | 4.220.07 a | 2.330.04 c | 3.180.01 b | ||||
Ala | 4.740.05 a | 3.310.15 b | 4.290.11 a | ||||
Arg | 14.730.09 a | 11.240.18 b | 14.810.11 a | ||||
Gly | 5.430.15 a | 3.540.11 c | 4.180.08 b | ||||
Ser | 5.840.19 a | 3.96 0.22 c | 5.150.07 b | ||||
Glu | 22.160.12 a | 15.780.20 c | 19.490.11 b | ||||
Asp | 10.040.21 a | 6.950.19 c | 9.380.11 b |
Hydrolase | SIT | ACS * | RMM orM/C | Ref |
---|---|---|---|---|
Pepsin | RP-HPLC-ESI-MS | ADAF | 423.23 Da | [19] |
Trypsin | UPLC-ESI-MS / MS | WSREEQEREE | 1377 Da | [43] |
Trypsin | UPLC-ESI-MS / MS | ADIYTEEAGR | 1124 Da | [43] |
Neutral protease | RP-HPLC,nanoLC-ESI–MS/MS,de novo sequencing | LAGNPDDEFRPQ | 1357.6262 Da | [26] |
Neutral Protease | RP-HPLC,nanoLC-ESI–MS/MS, de novo sequencing | VEDELVAVV | 971.5080 Da | [26] |
Papain | RP-HPLC | CTLEW | 651.2795 Da | [47] |
Tripsin, Viscozyme L | UPLC-ESI-Q-TOF-MS/MS | GGW | 319.1400 Da | [48] |
Tripsin, Viscozyme L | UPLC-ESI-Q-TOF-MS/MS | VYY | 444.2129 Da | [48] |
Tripsin, Viscozyme L | UPLC-ESI-Q-TOF-MS/MS | LLPF | 489.3071Da | [48] |
Pancreatin | ESI-MS/MS | YS | 269.11 m/z | [12] |
Pancreatin | ESI-MS/MS | YSVH | 505.23 m/z | [12] |
Pancreatin | ESI-MS/MS | YK | 310.14 m/z | [12] |
Pancreatin | ESI-MS/MS | YT | 283.13 m/z | [12] |
Pancreatin | ESI-MS/MS | LPC | 331.16 m/z | [12] |
Pancreatin | ESI-MS/MS | EM | 279.13 m/z | [12] |
Pancreatin | ESI-MS/MS | CA | 192.14 m/z | [12] |
Pancreatin | ESI-MS/MS | SQK | 362.3272 m/z | [12] |
Pancreatin | ESI-MS/MS | CR | 288.2900 m/z | [12] |
Pancreatin | ESI-MS/MS | CHC | 362.3265 m/z | [12] |
Pancreatin | ESI-MS/MS | GHC | 316.3200 m/z | [12] |
Pancreatin | ESI-MS/MS | YA | 253.1181 m/z | [12] |
Pancreatin | ESI-MS/MS | YG | 239.1025 m/z | [12] |
Pancreatin | ESI-MS/MS | NW | 318.3007 m/z | [12] |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | VEGNLQVLRPR | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | LAGNPHQQQQ | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | HNLDTQTESDV | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | AGNDGFEYVTLK | [44] | |
Alcalase protamex | HPLC-FTMS, de novo sequencing, scoring method | WSVWEQELEDR | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | QQRQQQGL | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | AELQVVDHLGQTV | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | EQEEEESTGRMK | [44] | |
Alcalase and protamex | HPLC-FTMS, de novo sequencing, scoring method | VEDELVAVV | [44] | |
Alcalase | LC-ESI-QTOF | AGGA | [42] | |
Simulating gastrointestinal digestion | RP-HPLC-UPLC-QTOF-MS | TY | [21] | |
Simulating gastrointestinal digestion | RP-HPLC-UPLC-QTOF-MS | SGGY | [21] |
Pre-Met | SIT | ACS * | RMM | IC50 | Ref |
---|---|---|---|---|---|
Enzymolysis | UF, GPC-HPLC, MALDI-TOF-MS | TWPERPPQIP | 1033.42Da | 25.67 μg/mL | [40] |
Enzymolysis | UF, GPC, HPLC (RP-HPLC), ESI | YEP | 407.43Da | 0.29 μmol/L | [24] |
Enzymolysis | MALDI-TOF-MS, GPC-HPLC | LPGRPPIKPWPL | 1353.67 Da | 128.98 μg/mL | [41] |
Enzymolysis | RP-HPLC, HPLC | YVPHWDL | 929Da | 0.136–0.173 μm/mL | [20] |
Fermentation | UF, UPLC-ESI-MS/MS, RP-HPLC | VQTL LGYEN | 459.35Da 594.28Da | - - | [36] |
Enzymolysis | UPLC-Q-TOF-MS/MS, HPLC-MS/MS | EPNGLLLPQY | 1142.60 Da | 0.233 μm/mL | [23] |
Enzymolysis | UPLC-MALDI-TOF-MS | LY | 295.19Da | 0.042 μm/mL | [59] |
Enzymolysis | UPLC-MALDI-TOF-MS | YLA | 366.24Da | 0.396 μm/mL | [59] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive Peptides from Walnut Residue Protein. Molecules 2020, 25, 1285. https://doi.org/10.3390/molecules25061285
Li X, Guo M, Chi J, Ma J. Bioactive Peptides from Walnut Residue Protein. Molecules. 2020; 25(6):1285. https://doi.org/10.3390/molecules25061285
Chicago/Turabian StyleLi, Xiangyang, Manli Guo, Jingtian Chi, and Jiangang Ma. 2020. "Bioactive Peptides from Walnut Residue Protein" Molecules 25, no. 6: 1285. https://doi.org/10.3390/molecules25061285