Next Article in Journal
Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes
Previous Article in Journal
Development of Novel Nrf2/ARE Inducers Bearing Pyrazino[2,1-a]isoquinolin Scaffold with Potent In Vitro Efficacy and Enhanced Physicochemical Properties
Previous Article in Special Issue
Sulfonamide-Linked Ciprofloxacin, Sulfadiazine and Amantadine Derivatives as a Novel Class of Inhibitors of Jack Bean Urease; Synthesis, Kinetic Mechanism and Molecular Docking
Article Menu

Export Article

Open AccessArticle
Molecules 2017, 22(9), 1533; doi:10.3390/molecules22091533

Optimization and Comparison of Synthetic Procedures for a Group of Triazinyl-Substituted Benzene-Sulfonamide Conjugates with Amino Acids

1
Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
2
Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
3
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
*
Author to whom correspondence should be addressed.
Received: 9 August 2017 / Revised: 4 September 2017 / Accepted: 7 September 2017 / Published: 13 September 2017
(This article belongs to the Special Issue Sulfonamides)
View Full-Text   |   Download PDF [1356 KB, uploaded 13 September 2017]   |  

Abstract

Sulfonamides incorporating 1,3,5-triazine moieties can selectively and potently inhibit carbonic anhydrase transmembrane isoforms IX, XII, and XIV over cytosolic isoforms I and II. In the present work, a highly effective synthetic procedure was proposed for this group of potent cancerostatic drugs and compared with previously used methods. The synthesis of triazinyl-substituted benzene-sulfonamide conjugates with amino acids can be easily carried out using sodium carbonate-based water solution as a synthetic medium instead of N,N-Diisopropylethylamine/Dimethylformamide. The benefits of this synthetic procedure include: (i) high selectivity of the creation of disubstituted conjugates; (ii) several times higher yield (≥95%) than that achieved previously; (iii) elimination of organic solvents by the use of an environmental friendly water medium (green chemistry); (iv) simple and fast isolation of the product. The synthesis and resulting products were evaluated using TLC, IR, NMR, and MS methods. The present work demonstrates a significant advantage in providing shortened routes to target structures. View Full-Text
Keywords: 1,3,5-triazine conjugates; sulfonamides; amino acids; carboanhydrase inhibitors; synthesis optimization 1,3,5-triazine conjugates; sulfonamides; amino acids; carboanhydrase inhibitors; synthesis optimization
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Krajčiová, D.; Pecher, D.; Garaj, V.; Mikuš, P. Optimization and Comparison of Synthetic Procedures for a Group of Triazinyl-Substituted Benzene-Sulfonamide Conjugates with Amino Acids. Molecules 2017, 22, 1533.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top