Next Article in Journal
Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities
Previous Article in Journal
Relationship between Antioxidant and Anticancer Activity of Trihydroxyflavones
Article Menu

Export Article

Open AccessArticle
Molecules 2017, 22(12), 1999; doi:10.3390/molecules22121999

Xanthones and Quinolones Derivatives Produced by the Deep-Sea-Derived Fungus Penicillium sp. SCSIO Ind16F01

1
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
2
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
These two authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Received: 16 October 2017 / Revised: 8 November 2017 / Accepted: 16 November 2017 / Published: 7 December 2017
(This article belongs to the Section Natural Products)
View Full-Text   |   Download PDF [626 KB, uploaded 7 December 2017]   |  

Abstract

Chemical investigation of the fungus Penicillium sp. SCSIO Ind16F01 derived from deep-sea sediment sample afforded a new xanthone, 3,8-dihydroxy-2-methyl-9-oxoxanthene-4-carboxylic acid methyl ester (1) and a new chromone, coniochaetone J (2), together with three known xanthones, 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester (3), 7,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester (4), 1,6,8-trihydroxy-3-(hydroxymethyl)anthraquinone (5), three known chromones, coniochaetone B (6), citrinolactones B (7), epiremisporine B (8), and four reported rare class of N-methyl quinolone lactams: quinolactacins B (9), C1 (10), and C2 (11), and quinolonimide (12). The structures of new compounds were determined by analysis of the NMR and MS spectroscopic data. Those isolated compounds were evaluated for their antiviral (EV71 and H3N2) and cytotoxic activities. View Full-Text
Keywords: marine-derived fungus; Penicillium sp. SCSIO Ind16F01; xanthone; chromone; N-methyl quinolone lactams marine-derived fungus; Penicillium sp. SCSIO Ind16F01; xanthone; chromone; N-methyl quinolone lactams
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liu, F.-A.; Lin, X.; Zhou, X.; Chen, M.; Huang, X.; Yang, B.; Tao, H. Xanthones and Quinolones Derivatives Produced by the Deep-Sea-Derived Fungus Penicillium sp. SCSIO Ind16F01. Molecules 2017, 22, 1999.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top