Next Article in Journal
Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria
Next Article in Special Issue
Recent Update on the Role of Chinese Material Medica and Formulations in Diabetic Retinopathy
Previous Article in Journal
Assignment of Absolute Configuration of a New Hepatoprotective Schiartane-Type Nortriterpenoid Using X-Ray Diffraction
Previous Article in Special Issue
Inhibitory Effects of Viscum coloratum Extract on IgE/Antigen-Activated Mast Cells and Mast Cell-Derived Inflammatory Mediator-Activated Chondrocytes
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(1), 73; doi:10.3390/molecules22010073

Agrimoniin, an Active Ellagitannin from Comarum palustre Herb with Anti-α-Glucosidase and Antidiabetic Potential in Streptozotocin-Induced Diabetic Rats

Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy Street 6, Ulan-Ude 670047, Russia
Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
Author to whom correspondence should be addressed.
Received: 15 November 2016 / Revised: 21 December 2016 / Accepted: 28 December 2016 / Published: 2 January 2017
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
View Full-Text   |   Download PDF [981 KB, uploaded 6 January 2017]   |  


Naturally existing α-glucosidase inhibitors from traditional herbal medicines have attracted considerable interest to treat type 2 diabetes mellitus (DM). The present study aimed to evaluate the anti-α-glucosidase activity of extracts from marsh cinquefoil (Comarum palustre L.), their hypoglycaemic action and detection of the responsible compounds. A 60% ethanol extract from C. palustre herb revealed the highest inhibitory activity against α-glucosidase (IC50 52.0 μg/mL). The HPLC analysis of the major compounds resulted in detection of 15 compounds, including ellagitannins, flavonoids, catechin and other compounds. Using HPLC activity-based profiling a good inhibitory activity of agrimoniin-containing eluates against α-glucosidase was demonstrated. The removal of ellagitannins from the C. palustre extract significantly decreased α-glucosidase inhibition (IC50 204.7 μg/mL) due to the high enzyme-inhibiting activity of the dominant agrimoniin (IC50 21.8 μg/mL). The hypoglycaemic effect of C. palustre extracts before and after ellagitannin removal, agrimoniin and insulin was evaluated on streptozotocin-induced experimental model. Diabetic rats treated with agrimoniin and C. palustre extract before ellagitannin removal showed significant increases in the levels of plasma glucose and glycosylated hemoglobin and significant decreases in the levels of plasma insulin and hemoglobin. The data obtained confirm the leading role of agrimoniin in the antidiabetic activity of the herb C. palustre and allows us to suggest the use of this plant as a possible dietary adjunct in the treatment of DM and a source of new oral hypoglycaemic agents. View Full-Text
Keywords: Comarum palustre; ellagitannins; α-glucosidase inhibition; anti-diabetic activity; agrimoniin Comarum palustre; ellagitannins; α-glucosidase inhibition; anti-diabetic activity; agrimoniin

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kashchenko, N.I.; Chirikova, N.K.; Olennikov, D.N. Agrimoniin, an Active Ellagitannin from Comarum palustre Herb with Anti-α-Glucosidase and Antidiabetic Potential in Streptozotocin-Induced Diabetic Rats. Molecules 2017, 22, 73.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top