Next Article in Journal
Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings
Previous Article in Journal
Cytotoxic Labdane Diterpenes from Hedychium ellipticum Buch.-Ham. ex Sm.
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(6), 680; doi:10.3390/molecules21060680

Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies

1
Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n. Bairro Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
2
Centro Universitário Barão de Mauá, R. Ramos de Azevedo, 423, Jardim Paulista, Ribeirão Preto, SP 14090-180, Brazil
3
College of Pharmacy, Federal University of Rio Grande do Norte, Rua Gustavo Cordeiro de Farias, s/n, Petrópolis, Natal 59012-570, RN, Brazil
*
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 12 March 2016 / Revised: 27 April 2016 / Accepted: 4 May 2016 / Published: 9 June 2016
(This article belongs to the Section Natural Products)
View Full-Text   |   Download PDF [15540 KB, uploaded 9 June 2016]   |  

Abstract

The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions. View Full-Text
Keywords: sunflower oil; liquid crystal; fatty esters; cosmetic products sunflower oil; liquid crystal; fatty esters; cosmetic products
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

da Rocha-Filho, P.A.; Maruno, M.; Ferrari, M.; Topan, J.F. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies. Molecules 2016, 21, 680.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top