Proteomic and Functional Analyses Reveal MAPK1 Regulates Milk Protein Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lys Promoted Cell Growth and Increased β-Casein Expression
2.2. Lys Caused Up-Regulated Expressed Phosphoproteins
Spot No. | Accession No. | Protein name | Gene name | MS/MS Scores | PI/MW (kDa) |
---|---|---|---|---|---|
1 | IPI00839454 | SKIV2L2 protein | SKIV2L2 | 143 | 5.94/118474.5 |
2 | IPI00692563 | sec-related protein D | SEC24D | 162 | 6.56/113982.8 |
3 | IPI00841695 | T-complex protein 1 subunit delta | CCT4 | 367 | 7.52/58865.2 |
4 | IPI00689325 | protein disulfide-isomerase A3 | PDIA3 | 182 | 6.23/57293 |
5 | IPI00692453 | coronin, actin binding protein, 1C | CORO1C | 550 | 6.3/53776.2 |
6 | IPI00713672 | mitogen-activated protein kinase 1 | MAPK1 | 668 | 6.5/41748.4 |
2.3. MAPK1 Up-Regulated Expression of Lactation Relative Proteins
2.4. Discussion
3. Experimental
3.1. Cell Preparation and Treatments
3.2. Cell Viability Assay and Reversed Phase High Performance Liquid Chromatography
3.3. Nuclear Protein Extraction and Phosphoprotein Enrichment by Affinity Chromatography
3.4. 2-DE and Identification of Proteins by MALDI-TOF-TOF Peptide Mass Fingerprinting
3.5. RNA Extraction and Quantitative Real-Time PCR
3.6. Western Blot Analysis
3.7. Small Interfering RNA Transfection
3.8. Construction of pGCMV-IRES-EGFP-MAPK1 and Transfection
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the dairy cow mammary epithelial cells (DCMECs) are available from the authors.
References
- Rajcevic, U.; Niclou, S.P.; Jimenez, C.R. Proteomics strategies for target identification and biomarker discovery in cancer. Front Biosci. 2009, 14, 3292–3303. [Google Scholar]
- Iwai, L.K.; Chang, F.; Huang, P.H. Phosphoproteomic analysis identifies insulin enhancement of discoidin domain receptor 2 phosphorylation. Cell Adh. Migr. 2012, 7, 1–4. [Google Scholar]
- Abudabos, A.; Aljumaah, R. Evaluation of Digestible Lysine Needs for Male Broiler. Int. J. Poult. Sci. 2010, 9, 1146–1151. [Google Scholar] [CrossRef]
- Burgos, S.A.; Dai, M.; Cant, J.P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. J. Dairy Sci. 2010, 93, 153–161. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008, 9, 366–387. [Google Scholar]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform Biol. Insights 2011, 5, 83–98. [Google Scholar]
- Carriere, A.; Romeo, Y.; Acosta-Jaquez, H.A.; Moreau, J.; Bonneil, E.; Thibault, P.; Fingar, D.C.; Roux, P.P. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1(mTORC1). J. Biol. Chem. 2011, 286, 567–577. [Google Scholar]
- Shan, L.; Yu, M.; Clark, B.D.; Snyderwine, E.G. Possible role of Stat5a in rat mammary gland Carcinogenesis. Breast Cancer Res. Treat. 2004, 88, 263–272. [Google Scholar] [CrossRef]
- Proud, C.G. Signalling to translation: How signal transduction pathways control the protein synthetic machinery. Biochem. J. 2007, 403, 217–234. [Google Scholar] [CrossRef]
- Parvathaneni, K.; Grigsby, J.G.; Betts, B.S.; Tsin, A.T. Estrogen-induced retinal endothelial cell proliferation: Possible involvement of pigment epithelium-derived factor AND phosphoinositide 3-kinase/mitogen-activated protein kinase pathways. J. Ocul. Pharmacol. Ther. 2012. [Google Scholar] [CrossRef]
- Mercier, J.C.; Vilotte, J.L. Structure and Function of Milk Protein Genes. J. Dairy Sci. 1993, 76, 3079–3098. [Google Scholar] [CrossRef]
- Santos, S.J.; Aupperlee, M.D.; Xie, J.; Durairaj, S.; Miksicek, R.; Conrad, S.E.; Leipprandt, J.R.; Tan, Y.S.; Schwartz, R.C.; Haslam, S.Z. Progesterone receptor A-regulated gene expression in mammary organoid cultures. J. Steroid Biochem. Mol. Biol. 2009, 115, 161–172. [Google Scholar] [CrossRef]
- Appuhamy, J.A.; Bell, A.L.; Nayananjalie, W.A.; Escobar, J.; Hanigan, M.D. Essential amino acidsregulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices. J. Nutr. 2011, 141, 1209–1215. [Google Scholar] [CrossRef]
- Yang, X.; Yang, C.; Farberman, A.; Rideout, T.C.; de Lange, C.F.; France, J.; Fan, M.Z. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth. J. Anim. Sci. 2008, 86, E36–E50. [Google Scholar]
- Li, F.; Yin, Y.; Tan, B.; Kong, X.; Wu, G. Leucine nutrition in animals and humans:mTORsignaling and beyond. Amino Acids 2011, 41, 1185–1193. [Google Scholar] [CrossRef]
- Kim, M.S.; Wu, K.Y.; Auyeung, V.; Chen, Q.; Gruppuso, P.A.; Phornphutkul, C. Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1374–E1382. [Google Scholar] [CrossRef]
- Finil, M.; Torricellil, P.; Giavaresil, G.; Carpi, A.; Nicolini, A.; Giardino, R. Effect of L-lysine and L-arginine on primary osteoblast cultures from normal and osteopenic rats. Biomed. Pharmacother. 2001, 55, 213–220. [Google Scholar] [CrossRef]
- Moshel, Y.; Rhoads, R.E.; Barash, I. Role of Amino Acids in Translational Mechanisms Governing Milk Protein Synthesis in Murine and Ruminant Mammary Epithelial Cells. J. Cell. Biochem. 2006, 98, 685–700. [Google Scholar] [CrossRef]
- Sarmah, S.; Barrallo-Gimeno, A.; Melville, D.B.; Topczewski, J.; Solnica-Krezel, L.; Knapik, E.W. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS One 2010, 5, e10367. [Google Scholar]
- Demmel, L.; Melak, M.; Kotisch, H.; Fendos, J.; Reipert, S.; Warren, G. Differential selection ofGolgi proteins by COPII Sec24 isoforms in procyclic Trypanosoma brucei. Traffic 2011, 12, 1575–1591. [Google Scholar] [CrossRef]
- Melville, D.B.; Knapik, E.W. Traffic jams in fish bones: ER-to-Golgi protein transport during zebrafish development. Cell Adh. Migr. 2011, 5, 114–118. [Google Scholar] [CrossRef]
- Abe, Y.; Yoon, S.O.; Kubota, K.; Mendoza, M.C.; Gygi, S.P.; Blenis, J. p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, Insulin, And nutrient signaling. J. Biol. Chem. 2009, 284, 14939–14948. [Google Scholar]
- Liu, X.F.; Li, M.; Li, Q.Z.; Lu, L.M. Stat5a Increases Lactation of Dairy Cow Mammary Gland Epithelial Cells Cultured in Vitro. In Vitro Cell Dev. Biol. Anim. 2012, 48, 554–561. [Google Scholar] [CrossRef]
- Pircher, T.J.; Petersen, H.; Gustafsson, J.A.; Haldosen, L.A. Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT)5a. Mol. Endocrinol. 1999, 13, 555–565. [Google Scholar] [CrossRef]
- Chichiarelli, S.; Gaucci, E.; Ferraro, A.; Grillo, C.; Altieri, F.; Cocchiola, R.; Arcangeli, V.; Turano, C.; Eufemi, M. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch. Biochem. Biophys. 2010, 494, 178–183. [Google Scholar] [CrossRef]
- Coe, H.; Jung, J.; Groenendyk, J.; Prins, D.; Michalak, M. ERp57 modulates STAT3 signaling from the lumen of the endoplasmic reticulum. J. Biol. Chem. 2010, 285, 6725–6738. [Google Scholar]
- Ramírez-Rangel, I.; Bracho-Valdés, I.; Vázquez-Macías, A.; Carretero-Ortega, J.; Reyes-Cruz, G.; Vázquez-Prado, J. Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol. Cell. Biol. 2011, 31, 1657–1671. [Google Scholar]
- Rybakin, V.; Clemen, C.S. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 2005, 27, 625–632. [Google Scholar] [CrossRef]
- Tong, H.L.; Gao, X.J.; Li, Q.Z.; Liu, J.; Li, N.; Wan, Z.Y. Metabolic regulation of mammary gland epithelial cells of dairy cow by galactopoietic compound isolated from Vaccariae segetalis. Agric. Sci. Chin. 2011, 10, 1106–1116. [Google Scholar] [CrossRef]
- Prizant, R.L.; Barash, I. Negative Effects of the Amino Acids Lys, His, and Thr on S6K1 Phosphorylation in Mammary Epithelial Cells. J. Cell. Biochem. 2008, 105, 1038–1047. [Google Scholar] [CrossRef]
- Wan, Z.Y.; Tong, H.L.; Li, Q.Z.; Gao, X.J. Influence on cellular signal transduction pathway in dairy cow mammary gland epithelial cells by galactopoietic compound isolated from Vaccariae Segetalis. Agric. Sci. Chin. 2011, 10, 619–930. [Google Scholar] [CrossRef]
- Huang, J.G.; Gao, X.J.; Li, Q.Z.; Lu, L.M.; Liu, R.; Luo, C.C.; Wang, J.L.; Qiao, B.; Jin, X. Proteomic analysis of the nuclear phosphorylated proteins in diary cow mammary epithelial cells treated with Estrogen. In Vitro Cell. Dev.-An. 2012, 48, 449–457. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lu, L.-M.; Li, Q.-Z.; Huang, J.-G.; Gao, X.-J. Proteomic and Functional Analyses Reveal MAPK1 Regulates Milk Protein Synthesis. Molecules 2013, 18, 263-275. https://doi.org/10.3390/molecules18010263
Lu L-M, Li Q-Z, Huang J-G, Gao X-J. Proteomic and Functional Analyses Reveal MAPK1 Regulates Milk Protein Synthesis. Molecules. 2013; 18(1):263-275. https://doi.org/10.3390/molecules18010263
Chicago/Turabian StyleLu, Li-Min, Qing-Zhang Li, Jian-Guo Huang, and Xue-Jun Gao. 2013. "Proteomic and Functional Analyses Reveal MAPK1 Regulates Milk Protein Synthesis" Molecules 18, no. 1: 263-275. https://doi.org/10.3390/molecules18010263
APA StyleLu, L.-M., Li, Q.-Z., Huang, J.-G., & Gao, X.-J. (2013). Proteomic and Functional Analyses Reveal MAPK1 Regulates Milk Protein Synthesis. Molecules, 18(1), 263-275. https://doi.org/10.3390/molecules18010263