Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Plant material
3.2. Isolation of essential oils
3.3. GC and GC-MS analyses
3.4. Identification of components
3.5. Physical properties
4. Conclusions
References and Notes
- MacLeod, A.J.; Snyder, C.H. Volatile components of two cultivars of mango from Florida. J. Agric. Food Chem. 1985, 33, 380–384. [Google Scholar] [CrossRef]
- Nagy, S.; Shaw, P.E. Tropical and Subtropical Fruits; AVI Publishing: Westport, CT, USA, 1980. [Google Scholar]
- MacLeod, A.J.; Snyder, C.H. Volatile components of mango preserved by deep freezing. J. Agric. Food Chem. 1988, 36, 137–139. [Google Scholar] [CrossRef]
- Gholap, A.S.; Bandyopadhyay, C. Characterisation of green aroma of raw mango (Mangifera indica L.). J. Sci. Food Agric 1977, 28, 885–888. [Google Scholar] [CrossRef]
- MacLeod, A.J.; de Troconis, N.G. Volatile flavour components of mango fruit. Phytochemistry 1982, 21, 2523–2526. [Google Scholar] [CrossRef]
- MacLeod, A.J.; Pieris, N.M. Comparison of the volatile components of some mango cultivars. Phytochemistry 1984, 23, 361–366. [Google Scholar] [CrossRef]
- Engel, K.-H.; Tressl, R. Studies on the Volatile components of two mango varieties. J. Agric. Food Chem. 1983, 31, 796–801. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem 2005, 53, 2213–2223. [Google Scholar]
- Alwala, O.J.; Wanzala, W.; Inyambukho, R.A.; Osundwa, E.M.; Ndiege, I.O. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J. Essent. Oil Bear. Pl. 2010, 13, 85–96. [Google Scholar] [CrossRef]
- Ansari, S.H.; Ali, M.; Maria Jose, P.-A. Characterization of volatile constituents of mango ’Qalmi’ (Mangifera indical L.) fruit. J. Essent. Oil Res. 2004, 16, 417–419. [Google Scholar] [CrossRef]
- Džamic, A.M.; Marin, P.D.; Gbolade, A.A.; Ristic, M.S. Chemical Composition of Mangifera indica Essential Oil From Nigeria. J. Essent. Oil Res. 2010, 22, 123–125. [Google Scholar]
- Ogunwande, I.A.; Saroglou, V.; Skaltsa, E.; Ogunbinu, A.O.; Kubmarawa, D. Constituents of Some Essential Oil Bearing Plants from Nigeria. J. Essent. Oil Res. 2009, 21, 61–66. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Evaluation of global yield, composition, antioxidant activity and cost of manufacturing of extracts from lemon verbena (Aloysia triphylla [L’herit.] Britton) and mango (Mangifera indica L.) leaves. J. Food Process Eng. 2007, 30, 150–173. [Google Scholar] [CrossRef]
- Keita, Y.; Koné, O.; Ly, A.K.; Häkkinen, V. Chemical- and antibacterial-activity studies of some Guinean mango varieties’ distillates. C. R. Chim. 2004, 7, 1095–1100. [Google Scholar] [CrossRef]
- Ollé, D.; Baumes, R.L.; Bayonove, C.L.; Lozano, Y.F.; Sznaper, C.; Brillouet, J.M. Comparison of free and glycosidically linked volatile components from polyembryonic and monoembryonic mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 1998, 46, 1094–1100. [Google Scholar] [CrossRef]
- Adedeji, J.; Hartman, T.G.; Lech, J.; Ho, C.-T. Characterization of glycosidically bound aroma compounds in the African mango (Mangifera indica L.). J. Agric. Food Chem. 1992, 40, 659–661. [Google Scholar] [CrossRef]
- Ansari, S.H.; Ali, M.; Velasco-Neguerela, A.; Pe´rez-Alonso, M.J. Volatile constituents of the fruits of three mango cultivars, Mangifera indica L. J. Essent. Oil Res. 1999, 11, 65–68. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Burns, J.K.; Kazokas, W.; Brecht, J.K.; Hagenmaier, R.D.; Bender, R.J.; Pesis, E. Effect of two edible coatings with different permeability characteristics on mango (Mangifera indica L.) ripening during storage. Postharvest Biol. Technol. 1999, 17, 215–226. [Google Scholar] [CrossRef]
- Lalel, H.J.D.; Singh, Z.; Tan, S.C. Distribution of aroma volatile compounds in different parts of mango fruit. J. Hortic. Sci. Biotechnol. 2003, 78, 131–138. [Google Scholar] [CrossRef]
- Hattab, M.E.; Culioli, G.; Piovetti, L.; Chitour, S.E.; Valls, R. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. J. Chromatogr. A 2007, 1143, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Idstein, H.; Schreier, P. Volatile constituents of Alphonso mango (Mangifera indica). Phytochemistry 1985, 24, 2313–2316. [Google Scholar] [CrossRef]
- Bartley, J.P.; Schwede, A. Volatile flavor components in the headspace of the Australian or ‘Bowen’ mango. J. Food Sci. 1987, 52, 353–360. [Google Scholar] [CrossRef]
- Malundo, T.M.M.; Baldwin, E.A.; Moshonas, M.G.; Baker, R.A., Shewfelt; Shewfelt, R.L. Method for the rapid headspace analysis of mango (Mangifera indica L.) homogenate volatile constituents and factors affecting quantitative results. J. Agric. Food Chem. 1997, 45, 2187–2194. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Ruperez, P.; Saura-Calixto, F. Mango peel fibres with antioxidant activity. Zeit. Leben.-Unter. Forsch. A 1997, 205, 39–42. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia, 9th ed.; China Medical Science and Technology Press: Beijing, China, 2005; Appendix 62. [Google Scholar]
- Szentmihályi, K.; Vinkler, P.; Lakatos, B.; Illés, V.; Then, M. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresource Technol. 2002, 82, 195–201. [Google Scholar]
- Özek, G.; Demirci, F.; Özek, T.; Tabanca, N.; Wedge, D.E.; Khan, S.I.; Başer, K.H.C.; Duran, A.; Hamzaoglu, E. Gas chromatographic–mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. J. Chromatogr. A 2010, 1217, 741–748. [Google Scholar]
- Golmakani, M.-T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ding, L.; Li, T.; Zhou, X.; Wang, L.; Zhang, H.; Liu, L.; Li, Y.; Liu, Z.; Wang, H.; Zeng, H.; He, H. Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. J. Chromatogr. A 1102, 1102, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent free microwave extraction of essential oils from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine of the National Academies. Food Chemical Codex, 4th ed.; National Academy Press: Washington, DC, USA, 1996; pp. 413–414. [Google Scholar]
- Iriti, M.; Colnaghi, G.; Chemat, F.; Smadja, J.; Faoro, F.; Visinoni, F.A. Histo-cytochemistry and scanning electron microscopy of lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: a comparative study. Flavour Fragr. J. 2006, 21, 704–712. [Google Scholar] [CrossRef]
Sample Availability: Samples are available from the authors. |
Peak number | Compound | Formula | RI | % Composition | Methods of Identification | |
MAHD | HD | |||||
1 | trans-3-Hexen-1-ol | C6H12O | 858 | 0.09 | 0.14 | RI, MSb |
2 | 1-Hexanol | C6H14O | 878 | 0.06 | 0.10 | RI, MS |
3 | Heptanal | C7H14O | 903 | 0.05 | 0.06 | RI, MS |
4 | α-Pinene | C10H16 | 932 | 3.47 | 2.39 | RI, MS, CoI |
5 | Camphene | C10H16 | 945 | 0.40 | 0.27 | RI, MS |
6 | Sabinene | C10H16 | 975 | 0.14 | 0.07 | RI, MS |
7 | Myrcene | C10H16 | 978 | 2.23 | 2.11 | RI, MS |
8 | β-Pinene | C10H16 | 979 | 1.27 | 0.95 | RI, MS |
9 | 2-Carene | C10H16 | 995 | 1.04 | 1.01 | RI, MS |
10 | α-Phellandrene | C10H16 | 1001 | 1.68 | 1.76 | RI, MS |
11 | d-3-Carene | C10H16 | 1011 | 7.72 | 8.17 | RI, MS |
12 | α-Terpinene | C10H16 | 1017 | 4.64 | 5.31 | RI, MS |
13 | o-Cymene | C10H14 | 1022 | 0.88 | -a | RI, MS |
14 | p-Cymene | C10H14 | 1026 | - | 0.34 | RI, MS |
15 | Limonene | C10H16 | 1029 | 5.22 | 5.39 | RI, MS |
16 | (Z)-β-Ocimene | C10H16 | 1040 | 1.10 | 1.25 | RI, MS |
17 | (E)-β-Ocimene | C10H16 | 1050 | 0.25 | 0.23 | RI, MS |
18 | γ-Terpinene | C10H16 | 1059 | 0.69 | 0.91 | RI, MS |
19 | (E)-Linalool oxide | C10H18O2 | 1070 | 0.06 | 0.25 | RI, MS, CoI |
20 | Terpinolene | C10H16 | 1084 | 43.17 | 50.16 | RI, MS |
21 | Thujol | C10H18O | 1095 | 0.43 | 0.06 | RI, MS |
22 | Linalool | C10H18O | 1100 | 0.48 | 0.63 | RI, MS |
23 | Hotrienol | C10H16O | 1101 | 0.71 | 1.09 | RI, MS |
24 | 4-Isopropyl-1-methyl-2-cylohexen-1-ol | C10H18O | 1117 | - | 0.13 | RI, MS |
25 | (3E,5E)-2,6-Dimethyl-1,3,5,7-octatetraene | C10H14 | 1134 | 0.22 | 0.24 | RI, MS, CoI |
26 | cis-Verbenol | C10H16O | 1140 | 0.82 | - | RI, MS |
27 | (Z)-2-Nonenal | C9H16O | 1145 | 0.06 | 0.05 | RI, MS |
28 | 2-Ethylcyclohexanone | C8H14O | 1158 | 0.46 | - | RI, MS |
29 | p-Mentha-1,5-dien-8-ol | C10H16O | 1159 | 0.06 | - | RI, MS, CoI |
30 | Terpinen-4-ol | C10H18O | 1178 | 0.85 | 0.82 | RI, MS |
31 | Nerol oxide | C10H16O | 1162 | 0.07 | 0.11 | RI, MS |
32 | p-Cymen-8-ol | C10H14O | 1182 | 4.04 | 0.33 | RI, MS |
33 | α-Terpineol | C10H18O | 1190 | 0.75 | 0.97 | RI, MS |
34 | 2-Methylisoborneol | C11H20O | 1197 | 1.13 | - | RI, MS |
35 | γ-Terpineol | C10H18O | 1199 | 0.15 | 0.18 | RI, MS |
36 | Nerol | C10H18O | 1233 | 0.09 | 0.11 | RI, MS |
37 | Geraniol | C10H18O | 1255 | 0.05 | 0.06 | RI, MS |
38 | trans-3-Caren-2-ol | C10H16O | 1272 | 0.18 | - | RI, MS |
39 | p-Ethylguaiacol | C9H12O2 | 1287 | 0.74 | - | RI, MS |
40 | α-Copaene | C15H24 | 1375 | 0.24 | 0.25 | RI, MS |
41 | β-Elemene | C15H24 | 1391 | 0.05 | 0.11 | RI, MS |
42 | Methyl eugenol | C11H14O2 | 1401 | 0.04 | 0.05 | RI, MS, CoI |
43 | α-Gurjunene | C15H24 | 1412 | 1.17 | 1.50 | RI, MS |
44 | β-Caryophyllene | C15H24 | 1420 | 1.34 | 1.84 | RI, MS |
45 | Carvone hydrate | C10H16O2 | 1424 | 0.75 | 0.06 | RI, MS |
46 | Aromadendrene | C15H24 | 1443 | 0.15 | 0.17 | RI, MS |
47 | α-Guaiene | C15H24 | 1453 | 0.28 | 1.29 | RI, MS |
48 | α-Humulene | C15H24 | 1453 | 0.71 | 0.82 | RI, MS |
49 | Alloaromadendrene | C15H24 | 1461 | 0.16 | - | RI, MS |
50 | γ-Muurolene | C15H24 | 1475 | 0.28 | - | RI, MS |
51 | β-Selinene | C15H24 | 1482 | 3.01 | 3.75 | RI, MS |
52 | α-Amorphene | C15H24 | 1484 | - | 0.37 | RI, MS |
53 | Germacrene D | C15H24 | 1487 | 0.77 | 0.86 | RI, MS |
54 | α- Muurolene | C15H24 | 1499 | 0.27 | 0.37 | RI, MS |
55 | δ-Cadinene | C15H24 | 1519 | 0.30 | 0.46 | RI, MS |
56 | Epiglobulol | C15H26O | 1532 | 0.18 | 0.68 | RI, MS |
57 | δ-Guaiene | C15H24 | 1526 | 0.51 | 0.59 | RI, MS, CoI |
58 | Ledol | C15H26O | 1552 | - | 0.11 | RI, MS |
59 | Guaia-3,9-diene | C15H24 | 1556 | 0.62 | 0.12 | RI, MS |
60 | Caryophyllene oxide | C15H24O | 1573 | 0.12 | - | RI, MS |
61 | α-Cadinol | C15H26O | 1653 | - | 0.29 | RI, MS |
Total | 96.40 | 99.34 | ||||
Monoterpene hydrocarbons | 74.12 | 80.56 | ||||
Oxygenated monoterpenes | 9.49 | 4.8 | ||||
Sesquiterpene hydrocarbons | 9.86 | 12.5 | ||||
Oxygenated sesquiterpenes | 0.30 | 1.08 | ||||
Othersc | 2.63 | 0.40 | ||||
Oil yield (w/w%) | 0.16 | 0.11 | ||||
Types | 56 | 51 |
Physical properties | MAHD | HD |
---|---|---|
Refractive index | 1.487 | 1.487 |
Specific gravity | 0.921 | 0.917 |
Appearance | Pale yellow | Yellow |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, H.-W.; Liu, Y.-Q.; Wei, S.-L.; Yan, Z.-J.; Lu, K. Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers. Molecules 2010, 15, 7715-7723. https://doi.org/10.3390/molecules15117715
Wang H-W, Liu Y-Q, Wei S-L, Yan Z-J, Lu K. Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers. Molecules. 2010; 15(11):7715-7723. https://doi.org/10.3390/molecules15117715
Chicago/Turabian StyleWang, Hong-Wu, Yan-Qing Liu, Shou-Lian Wei, Zi-Jun Yan, and Kuan Lu. 2010. "Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers" Molecules 15, no. 11: 7715-7723. https://doi.org/10.3390/molecules15117715
APA StyleWang, H.-W., Liu, Y.-Q., Wei, S.-L., Yan, Z.-J., & Lu, K. (2010). Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers. Molecules, 15(11), 7715-7723. https://doi.org/10.3390/molecules15117715